Automation transformed various aspects of our human civilization, revolutionizing industries and streamlining processes. In the domain of scientific inquiry, automated approaches emerged as powerful tools, holding promise for accelerating discovery, enhancing reproducibility, and overcoming the traditional impediments to scientific progress. This article evaluates the scope of automation within scientific practice and assesses recent approaches. Furthermore, it discusses different perspectives to the following questions: where do the greatest opportunities lie for automation in scientific practice?; What are the current bottlenecks of automating scientific practice?; and What are significant ethical and practical consequences of automating scientific practice? By discussing the motivations behind automated science, analyzing the hurdles encountered, and examining its implications, this article invites researchers, policymakers, and stakeholders to navigate the rapidly evolving frontier of automated scientific practice.
more »
« less
Scientific Discovery at the Press of a Button: Navigating Emerging Cloud Laboratory Technology
Abstract The “cloud lab,” an automated laboratory that allows researchers to program and conduct physical experiments remotely, represents a paradigm shift in scientific practice. This shift from wet‐lab research as a primarily manual enterprise to one more akin to programming bears incredible promise by democratizing a completely new level of automation and its advantages to the scientific community. Moreover, they provide a foundation on which automated science driven by artificial intelligence (A.I.) can be built upon and thereby resolve limitations in scope and accessibility that current systems face. With a focus on DNA nanotechnology, the authors have had the opportunity to explore and apply the cloud lab to active research. This perspective delves into the future potential of cloud labs in accelerating scientific research and broadening access to automation. The challenges associated with the technology in its current state are further explored, including difficulties in experimental troubleshooting, the limited applicability of its parallelization in an academic setting, as well as the potential reduction in experimental flexibility associated with the approach.
more »
« less
- Award ID(s):
- 1944130
- PAR ID:
- 10535098
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 9
- Issue:
- 16
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Current scientific experiments frequently involve control of specialized instruments (e.g., scanning electron mi- croscopes), image data collection from those instruments, and transfer of the data for processing at simulation centers. This process requires a “human-in-the-loop” to perform those tasks manually, which besides requiring a lot of effort and time, could lead to inconsistencies or errors. Thus, it is essential to have an automated system capable of performing remote instrumentation to intelligently control and collect data from the scientific instruments. In this paper, we propose a Remote Instrumentation Science Environment (RISE) for intelligent im- age analytics that provides the infrastructure to securely capture images, determine process parameters via machine learning, and provide experimental control actions via automation, under the premise of “human-on-the-loop”. The machine learning in RISE aids an iterative discovery process to assist researchers to tune instrument settings to improve the outcomes of experiments. Driven by two scientific use cases of image analytics pipelines, one in material science, and another in biomedical science, we show how RISE automation leverages a cutting-edge integration of cloud computing, on-premise HPC cluster, and a Python programming interface available on a microscope. Using web services, we implement RISE to perform automated image data collection/analysis guided by an intelligent agent to provide real-time feedback control of the microscope using the image analytics outputs. Our evaluation results show the benefits of RISE for researchers to obtain higher image analytics accuracy, save precious time in manually controlling the microscopes, while reducing errors in operating the instruments.more » « less
-
ABSTRACT Automated scoring is a current hot topic in creativity research. However, most research has focused on the English language and popular verbal creative thinking tasks, such as the alternate uses task. Therefore, in this study, we present a large language model approach for automated scoring of a scientific creative thinking task that assesses divergent ideation in experimental tasks in the German language. Participants are required to generate alternative explanations for an empirical observation. This work analyzed a total of 13,423 unique responses. To predict human ratings of originality, we used XLM‐RoBERTa (Cross‐lingual Language Model‐RoBERTa), a large, multilingual model. The prediction model was trained on 9,400 responses. Results showed a strong correlation between model predictions and human ratings in a held‐out test set (n = 2,682;r = 0.80; CI‐95% [0.79, 0.81]). These promising findings underscore the potential of large language models for automated scoring of scientific creative thinking in the German language. We encourage researchers to further investigate automated scoring of other domain‐specific creative thinking tasks.more » « less
-
Abstract Landmark‐based geometric morphometrics has emerged as an essential discipline for the quantitative analysis of size and shape in ecology and evolution. With the ever‐increasing density of digitized landmarks, the possible development of a fully automated method of landmark placement has attracted considerable attention. Despite the recent progress in image registration techniques, which could provide a pathway to automation, three‐dimensional (3D) morphometric data are still mainly gathered by trained experts. For the most part, the large infrastructure requirements necessary to perform image‐based registration, together with its system specificity and its overall speed, have prevented its wide dissemination.Here, we propose and implement a general and lightweight point cloud‐based approach to automatically collect high‐dimensional landmark data in 3D surfaces (Automated Landmarking through Point cloud Alignment and Correspondence Analysis). Our framework possesses several advantages compared with image‐based approaches. First, it presents comparable landmarking accuracy, despite relying on a single, random reference specimen and much sparser sampling of the structure's surface. Second, it can be efficiently run on consumer‐grade personal computers. Finally, it is general and can be applied at the intraspecific level to any biological structure of interest, regardless of whether anatomical atlases are available.Our validation procedures indicate that the method can recover intraspecific patterns of morphological variation that are largely comparable to those obtained by manual digitization, indicating that the use of an automated landmarking approach should not result in different conclusions regarding the nature of multivariate patterns of morphological variation.The proposed point cloud‐based approach has the potential to increase the scale and reproducibility of morphometrics research. To allow ALPACA to be used out‐of‐the‐box by users with no prior programming experience, we implemented it as a SlicerMorph module. SlicerMorph is an extension that enables geometric morphometrics data collection and 3D specimen analysis within the open‐source 3D Slicer biomedical visualization ecosystem. We expect that convenient access to this platform will make ALPACA broadly applicable within ecology and evolution.more » « less
-
Abstract Despite many interventions, science education remains highly inequitable throughout the world. Internet-enabled experimental learning has the potential to reach underserved communities and increase the diversity of the scientific workforce. Here, we demonstrate the use of lab-on-a-chip (LoC) technologies to expose Latinx life science undergraduate students to introductory concepts of computer programming by taking advantage of open-loop cloud-integrated LoCs. We developed a context-aware curriculum to train students at over 8000 km from the experimental site. Through this curriculum, the students completed an assignment testing bacteria contamination in water using LoCs. We showed that this approach was sufficient to reduce the students’ fear of programming and increase their interest in continuing careers with a computer science component. Altogether, we conclude that LoC-based internet-enabled learning can become a powerful tool to train Latinx students and increase the diversity in STEM.more » « less
An official website of the United States government
