The discovery of quiescent, dark matter (DM)-deficient ultra-diffuse galaxies (UDGs) with overluminous globular clusters (GCs) has challenged galaxy formation models within the Lambda cold dark matter (ΛCDM) cosmological paradigm. Previously, such galaxies were only identified in the NGC 1052 group, raising the possibility that they are the result of unique, group-specific processes, and limiting their broader significance. The recent identification of FCC 224, a putative DM-deficient UDG on the outskirts of the Fornax Cluster, suggests that such galaxies are not confined to the NGC 1052 group but rather represent a broader phenomenon. We aim to investigate the DM content of FCC 224 and to explore its similarities to the DM-free dwarfs in the NGC 1052 group, DF2 and DF4, to determine whether or not it belongs to the same class of DM-deficient UDGs. We use high-resolution Keck Cosmic Web Imager (KCWI) spectroscopy to study the kinematics, stellar populations, and GC system of FCC 224, enabling direct comparisons with DF2 and DF4. We find that FCC 224 is also DM-deficient and exhibits a distinct set of traits shared with DF2 and DF4, including slow and prolate rotation, quiescence in low-density environments, coeval formation of stars and GCs, flat stellar population gradients, a top-heavy GC luminosity function, and monochromatic GCs. These shared characteristics signal the existence of a previously unrecognised class of DM-deficient dwarf galaxies. This diagnostic framework provides a means of identifying additional examples and raises new questions for galaxy formation models within ΛCDM cosmology.
more »
« less
A Candidate Dark Matter Deficient Dwarf Galaxy in the Fornax Cluster Identified through Overluminous Star Clusters
Abstract Two low surface brightness (LSB) dwarf galaxies were identified recently as having little or no dark matter (DM), provoking widespread interest in their formation histories. These galaxies also host populous systems of star clusters that are on average larger and more luminous than typical globular clusters (GCs). We report an initial attempt to identify new candidate DM-deficient dwarfs via their unusual GC systems. Using a large catalog of LSB galaxies from the Dark Energy Survey, we inspect their Dark Energy Camera Legacy Survey (DECaLS) imaging and identify FCC 224 as a candidate found on the outskirts of the Fornax cluster. We analyze the GC system using DECaLS and archival Hubble Space Telescope WFPC2 imaging, and find an apparent population of overluminous GCs. More detailed follow-up of FCC 224 is in progress.
more »
« less
- Award ID(s):
- 2308390
- PAR ID:
- 10535213
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- Research Notes of the AAS
- Volume:
- 8
- Issue:
- 8
- ISSN:
- 2515-5172
- Format(s):
- Medium: X Size: Article No. 202
- Size(s):
- Article No. 202
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the quiescent ultradiffuse galaxy FCC 224 in the Fornax cluster using Hubble Space Telescope (HST) imaging, motivated by peculiar properties of its globular cluster (GC) system revealed in shallower imaging. The surface brightness fluctuation distance of FCC 224 measured from HST is 18.6 ± 2.7 Mpc, consistent with the Fornax cluster distance. We use Prospector to infer the stellar population from a combination of multiwavelength photometry (HST, ground-based, Wide-field Infrared Survey Explorer) and Keck Cosmic Web Imager spectroscopy. The galaxy has a mass-weighted age of ∼10 Gyr, metallicity [M/H] of ∼ −1.25 dex, and a very short formation e-folding time of τ ∼ 0.3 Gyr. Its 12 candidate GCs exhibit highly homogeneous g_475−I_814 colors, merely 0.04 mag bluer than the diffuse starlight, which supports a single-burst formation scenario for this galaxy. We confirm a top-heavy GC luminosity function, similar to the two dark matter deficient galaxies NGC 1052-DF2 and DF4. However, FCC 224 differs from those galaxies with relatively small GC sizes of ∼3 pc (∼35% smaller than typical for other dwarfs), and with radial mass segregation in its GC system. We are not yet able to identify a formation scenario to explain all of the GC properties in FCC 224. Follow-up measurements of the dark matter content in FCC 224 will be crucial because of the mix of similarities and differences among FCC 224, DF2, and DF4.more » « less
-
ABSTRACT We present Hubble Space Telescope ACS/WFC and WFC3/UVIS imaging for a sample of 50 low-surface brightness (LSB) galaxies in the $$\sim 10^{15}$$ M$$_{\odot }$$ Perseus cluster, which were originally identified in ground-based imaging. We measure the structural properties of these galaxies and estimate the total number of globular clusters (GCs) they host. Around half of our sample galaxies meet the strict definition of an ultra-diffuse galaxy (UDG), while the others are UDG-like but are either somewhat more compact or slightly brighter. A small number of galaxies reveal systems with many tens of GCs, rivalling some of the richest GC systems known around UDGs in the Coma cluster. We find the sizes of rich GC systems, in terms of their half-number radii, extending to $$\sim$$1.2 times the half-light radii of their host galaxy on average. The mean colours of the GC systems are the same, within the uncertainties, as those of their host galaxy stars. This suggests that GCs and galaxy field stars may have formed at the same epoch from the same enriched gas. It may also indicate a significant contribution from disrupted GCs to the stellar component of the host galaxy as might be expected in the ‘failed galaxy’ formation scenario for UDGs.more » « less
-
Candidate Dark Galaxy-2 (CDG-2) is a potential dark galaxy consisting of four globular clusters (GCs) in the Perseus cluster, first identified in D. Li et al. through a sophisticated statistical method. The method searched for overdensities of GCs from a Hubble Space Telescope (HST) survey targeting Perseus. Using the same HST images and new imaging data from the Euclid survey, we report the detection of extremely faint but significant diffuse emission around the four GCs of CDG-2. We thus have exceptionally strong evidence that CDG-2 is a galaxy. This is the first galaxy detected purely through its GC population. Under the conservative assumption that the four GCs make up the entire GC population, preliminary analysis shows that CDG-2 has a total luminosity of L_V,gal = 6.2 ± 3.0 × 10^6 L_⊙ and a minimum GC luminosity of L_V,GC = 1.03 ± 0.2 × 10^6 L_⊙. Our results indicate that CDG-2 is one of the faintest galaxies having associated GCs, while at least ∼16.6% of its light is contained in its GC population. This ratio is likely to be much higher (∼33%) if CDG-2 has a canonical GC luminosity function (GCLF). In addition, if the previously observed GC-to-halo mass relations apply to CDG-2, it would have a minimum dark matter halo mass fraction of 99.94% to 99.98%. If it has a canonical GCLF, then the dark matter halo mass fraction is ≳99.99%. Therefore, CDG-2 may be the most GC dominated galaxy and potentially one of the most dark matter dominated galaxies ever discovered.more » « less
-
Abstract The properties of globular clusters (GCs) contain valuable information of their host galaxies and dark-matter halos. In the remarkable example of ultra-diffuse galaxy, NGC5846-UDG1, the GC population exhibits strong radial mass segregation, indicative of dynamical-friction-driven orbital decay, which opens the possibility of using imaging data alone to constrain the dark-matter content of the galaxy. To explore this possibility, we develop a semianalytical model of GC evolution, which starts from the initial mass, structural, and spatial distributions of the GC progenitors, and follows the effects of dynamical friction, tidal evolution, and two-body relaxation. Using Markov Chain Monte Carlo, we forward-model the GCs in a UDG1-like potential to match the observed GC statistics, and to constrain the profile of the host halo and the origin of the GCs. We find that, with the assumptions of zero mass segregation when the star clusters were born, UDG1 is relatively dark-matter-poor compared to what is expected from stellar-to-halo–mass relations, and its halo concentration is lower than the cosmological average, irrespective of having a cuspy or a cored profile. Its GC population has an initial spatial distribution more extended than the smooth stellar distribution. We discuss the results in the context of scaling laws of galaxy–halo connections, and warn against naively using the GC-abundance–halo–mass relation to infer the halo mass of ultra-diffuse galaxies. Our model is generally applicable to GC-rich dwarf galaxies, and is publicly available.more » « less
An official website of the United States government
