skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural coloring with low-index polymer nanostructures via multipolar decomposition-based design and optimization
Recently, there have been notable advances in nanophotonic structural color generation which enabled various applications in display, anti-counterfeiting, sensors and detectors. However, most advances in this domain have been achieved through the use of high-index materials which require expensive and complex fabrication. In this work, we enable low-index polymer nanostructures to generate structural colors using the multipolar decomposition technique which allows a better understanding and design of the scattering process by identifying the dominant multipole modes from the scattered fields. We set a polymeric (n~1.56) cuboid as the structural color generation platform, examined the contributions of various multipoles from the wave scattered by it, and synthesized the desired color spectrum by adjusting only the height of the cuboid. To validate our findings, we fabricated the designed structural color pixels via light-controlled, low-pressure nanoimprinting and measured the color and spectrum from them. Our experimental results agreed well with the simulation results, providing insights for bringing further advances to structural coloring.  more » « less
Award ID(s):
2129796
PAR ID:
10535339
Author(s) / Creator(s):
; ;
Editor(s):
Piyawattanametha, Wibool; Park, Yong-Hwa; Zappe, Hans
Publisher / Repository:
SPIE
Date Published:
ISBN:
9781510670587
Page Range / eLocation ID:
28
Format(s):
Medium: X
Location:
San Francisco, United States
Sponsoring Org:
National Science Foundation
More Like this
  1. The multipole interference (MPI) effect plays pivotal roles in the formation of electromagnetic responses in various settings. In the optics regime, it has been realized typically through the Mie resonance that necessitates high‐index, deep‐subwavelength‐scale dielectric resonators that are challenging to fabricate. Herein, a new, diffraction‐based MPI scheme that can be realized with low‐index, mesoscale dielectric structures is demonstrated. It is verified that this “diffractive MPI” concept by realizing various MPI states using micrometric polymeric cuboids fabricated by soft‐lithography. Subsequent analyses reveal that the MPI states with a distinct near‐zero forward scattering (NZFS) characteristic played crucial roles in shaping the cuboid's transmission spectrum. A hitherto unreported NZFS state, which exhibits a unique, “trifolium” radiation pattern, is also identified. The spectral position of such NZFS states turns out to be strongly dependent on the cuboid's geometry. By combining these results, the diffractive NZFS formation is related to the important phenomena of induced transparency and structural color generation. 
    more » « less
  2. Abstract This article analyzes various color quantization methods using multiple image quality assessment indices. Experiments were conducted with ten color quantization methods and eight image quality indices on a dataset containing 100 RGB color images. The set of color quantization methods selected for this study includes well-known methods used by many researchers as a baseline against which to compare new methods. On the other hand, the image quality assessment indices selected are the following: mean squared error, mean absolute error, peak signal-to-noise ratio, structural similarity index, multi-scale structural similarity index, visual information fidelity index, universal image quality index, and spectral angle mapper index. The selected indices not only include the most popular indices in the color quantization literature but also more recent ones that have not yet been adopted in the aforementioned literature. The analysis of the results indicates that the conventional assessment indices used in the color quantization literature generate different results from those obtained by newer indices that take into account the visual characteristics of the images. Therefore, when comparing color quantization methods, it is recommended not to use a single index based solely on pixelwise comparisons, as is the case with most studies to date, but rather to use several indices that consider the various characteristics of the human visual system. 
    more » « less
  3. Abstract Iridescent color-shift pigments have been used in some industrial applications, e.g., for cosmetics and packaging. To achieve environmental-friendly and lasting color, thin-film interference is used to generate structural color. By maximizing the refractive index (RI) difference between the thin films (i.e., using an ultralow RI film), super-iridescent structural color can be produced. While the lowest refractive index of a naturally occurring solid dielectric is close to 1.37 (i.e., MgF2), we synthesized highly porous dielectric SiO2aerogel to achieve ultralow-RI (n ~ 1.06) and demonstrated a high-refractive index/low-refractive index/absorber (HLA) trilayer structural color. The achieved structural color is highly iridescent and capable of tracing a near-closed loop in CIE color space. By tuning the refractive index, thickness, and geometry of the aerogel layer, we control the reflection dip’s shape, therefore producing a wide range of vivid and iridescent colors. 
    more » « less
  4. Metal halide perovskite nanocrystals (NCs) have emerged as new-generation light-emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g., platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectrum. Despite remarkable advances in the field of perovskite NCs, many nanostructures in inorganic NCs have not yet been realized in metal halide perovskites, and producing highly efficient blue-emitting perovskite NCs remains challenging and of great interest. Here, we report the discovery of highly efficient blue-emitting cesium lead bromide (CsPbBr 3 ) perovskite hollow NCs. By facile solution processing of CsPbBr 3 precursor solution containing ethylenediammonium bromide and sodium bromide, in situ formation of hollow CsPbBr 3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effect results in color tuning of CsPbBr 3 NCs from green to blue, with high PLQEs of up to 81%. 
    more » « less
  5. Optical Thomson scattering is now a mature diagnostic tool for precisely measuring local plasma density and temperature. These measurements typically take advantage of a simplified analytical model of the scattered spectrum, which is built upon the assumption that each plasma species is in thermal equilibrium. However, this assumption fails for most laboratory plasmas of interest, which are often produced through high field ionization of atoms via ultrashort laser pulses and vulnerable to several kinetic instabilities. While it is possible to analytically model the Thomson scattered spectrum for some non-Maxwellian distribution functions, it is often not practical to do so for laboratory plasmas with highly complex and unstable distribution functions. We present a new method for predicting the Thomson scattered spectrum from any plasma directly from fully kinetic particle-in-cell simulations. This approach allows us to model the contributions of kinetic instabilities to the Thomson spectrum that aren’t taken into account in Maxwellian theory. We demonstrate this method’s capability to capture nonthermal features in the Thomson spectrum by simulating a simple bumpon- tail plasma as well as a more complex laser-ionized plasma. The versatility of this approach makes it an effective aid in the experimental design of Thomson diagnostics to directly characterize kinetic instabilities in laboratory plasmas. Index Terms—plasma measurement, low-temperature plasmas, plasma diagnostics, plasma simulation, plasma stability, plasma density, plasma temperature 
    more » « less