Abstract We study higher uniformity properties of the Möbius function$$\mu $$, the von Mangoldt function$$\Lambda $$, and the divisor functions$$d_k$$on short intervals$$(X,X+H]$$with$$X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$$for a fixed constant$$0 \leq \theta < 1$$and any$$\varepsilon>0$$. More precisely, letting$$\Lambda ^\sharp $$and$$d_k^\sharp $$be suitable approximants of$$\Lambda $$and$$d_k$$and$$\mu ^\sharp = 0$$, we show for instance that, for any nilsequence$$F(g(n)\Gamma )$$, we have$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when$$\theta = 5/8$$and$$f \in \{\Lambda , \mu , d_k\}$$or$$\theta = 1/3$$and$$f = d_2$$. As a consequence, we show that the short interval Gowers norms$$\|f-f^\sharp \|_{U^s(X,X+H]}$$are also asymptotically small for any fixedsfor these choices of$$f,\theta $$. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in$$L^2$$. Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type$$II$$sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type$$I_2$$sums.
more »
« less
Theta functions, fourth moments of eigenforms and the sup-norm problem II
Abstract Letfbe an$$L^2$$-normalized holomorphic newform of weightkon$$\Gamma _0(N) \backslash \mathbb {H}$$withNsquarefree or, more generally, on any hyperbolic surface$$\Gamma \backslash \mathbb {H}$$attached to an Eichler order of squarefree level in an indefinite quaternion algebra over$$\mathbb {Q}$$. Denote byVthe hyperbolic volume of said surface. We prove the sup-norm estimate$$\begin{align*}\| \Im(\cdot)^{\frac{k}{2}} f \|_{\infty} \ll_{\varepsilon} (k V)^{\frac{1}{4}+\varepsilon} \end{align*}$$ with absolute implied constant. For a cuspidal Maaß newform$$\varphi $$of eigenvalue$$\lambda $$on such a surface, we prove that$$\begin{align*}\|\varphi \|_{\infty} \ll_{\lambda,\varepsilon} V^{\frac{1}{4}+\varepsilon}. \end{align*}$$ We establish analogous estimates in the setting of definite quaternion algebras.
more »
« less
- Award ID(s):
- 1926686
- PAR ID:
- 10535348
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Forum of Mathematics, Pi
- Volume:
- 12
- ISSN:
- 2050-5086
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The purpose of this paper is to introduce and study the following graph-theoretic paradigm. Let$$ \begin{align*}T_Kf(x)=\int K(x,y) f(y) d\mu(y),\end{align*} $$where$$f: X \to {\Bbb R}$$,Xa set, finite or infinite, andKand$$\mu $$denote a suitable kernel and a measure, respectively. Given a connected ordered graphGonnvertices, consider the multi-linear form$$ \begin{align*}\Lambda_G(f_1,f_2, \dots, f_n)=\int_{x^1, \dots, x^n \in X} \ \prod_{(i,j) \in {\mathcal E}(G)} K(x^i,x^j) \prod_{l=1}^n f_l(x^l) d\mu(x^l),\end{align*} $$where$${\mathcal E}(G)$$is the edge set ofG. Define$$\Lambda _G(p_1, \ldots , p_n)$$as the smallest constant$$C>0$$such that the inequality(0.1)$$ \begin{align} \Lambda_G(f_1, \dots, f_n) \leq C \prod_{i=1}^n {||f_i||}_{L^{p_i}(X, \mu)} \end{align} $$holds for all nonnegative real-valued functions$$f_i$$,$$1\le i\le n$$, onX. The basic question is, how does the structure ofGand the mapping properties of the operator$$T_K$$influence the sharp exponents in (0.1). In this paper, this question is investigated mainly in the case$$X={\Bbb F}_q^d$$, thed-dimensional vector space over the field withqelements,$$K(x^i,x^j)$$is the indicator function of the sphere evaluated at$$x^i-x^j$$, and connected graphsGwith at most four vertices.more » « less
-
Abstract We investigate a novel geometric Iwasawa theory for$${\mathbf Z}_p$$-extensions of function fields over a perfect fieldkof characteristic$$p>0$$by replacing the usual study ofp-torsion in class groups with the study ofp-torsion class groupschemes. That is, if$$\cdots \to X_2 \to X_1 \to X_0$$is the tower of curves overkassociated with a$${\mathbf Z}_p$$-extension of function fields totally ramified over a finite nonempty set of places, we investigate the growth of thep-torsion group scheme in the Jacobian of$$X_n$$as$$n\rightarrow \infty $$. By Dieudonné theory, this amounts to studying the first de Rham cohomology groups of$$X_n$$equipped with natural actions of Frobenius and of the Cartier operatorV. We formulate and test a number of conjectures which predict striking regularity in the$$k[V]$$-module structure of the space$$M_n:=H^0(X_n, \Omega ^1_{X_n/k})$$of global regular differential forms as$$n\rightarrow \infty .$$For example, for each tower in a basic class of$${\mathbf Z}_p$$-towers, we conjecture that the dimension of the kernel of$$V^r$$on$$M_n$$is given by$$a_r p^{2n} + \lambda _r n + c_r(n)$$for allnsufficiently large, where$$a_r, \lambda _r$$are rational constants and$$c_r : {\mathbf Z}/m_r {\mathbf Z} \to {\mathbf Q}$$is a periodic function, depending onrand the tower. To provide evidence for these conjectures, we collect extensive experimental data based on new and more efficient algorithms for working with differentials on$${\mathbf Z}_p$$-towers of curves, and we prove our conjectures in the case$$p=2$$and$$r=1$$.more » « less
-
Abstract Let$$\varphi _1,\ldots ,\varphi _r\in {\mathbb Z}[z_1,\ldots z_k]$$be integral linear combinations of elementary symmetric polynomials with$$\text {deg}(\varphi _j)=k_j\ (1\le j\le r)$$, where$$1\le k_1<\cdots . Subject to the condition$$k_1+\cdots +k_r\ge \tfrac {1}{2}k(k-~1)+2$$, we show that there is a paucity of nondiagonal solutions to the Diophantine system$$\varphi _j({\mathbf x})=\varphi _j({\mathbf y})\ (1\le j\le r)$$.more » « less
-
Abstract What proportion of integers$$n \leq N$$may be expressed as$$x^2 + dy^2$$for some$$d \leq \Delta $$, with$$x,y$$integers? Writing$$\Delta = (\log N)^{\log 2} 2^{\alpha \sqrt {\log \log N}}$$for some$$\alpha \in (-\infty , \infty )$$, we show that the answer is$$\Phi (\alpha ) + o(1)$$, where$$\Phi $$is the Gaussian distribution function$$\Phi (\alpha ) = \frac {1}{\sqrt {2\pi }} \int ^{\alpha }_{-\infty } e^{-x^2/2} dx$$. A consequence of this is a phase transition: Almost none of the integers$$n \leq N$$can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 - \varepsilon }$$, but almost all of them can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 + \varepsilon}\kern-1.5pt$$.more » « less
An official website of the United States government

