skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Out‐of‐band transaction pool sync for large dynamic blockchain networks
Synchronization of transaction pools (mempools) has shown potential for improving the performance and block propagation delay of state-of-the-art blockchains. Indeed, various heuristics have been proposed in the literature to incorporate early exchanges of unconfirmed transactions into the block propagation protocol. In this work, we take a different approach, maintaining transaction synchronization externally (and independently) of the block propagation channel. In the process, we formalize the synchronization problem within a graph theoretic framework and introduce a novel algorithm (SREP - Set Reconciliation-Enhanced Propagation) with quantifiable guarantees. We analyze the algorithm’s performance for various realistic network topologies, and show that it converges on static connected graphs in a time bounded by the diameter of the graph. In graphs with dynamic edges, SREP converges in an expected time that is linear in the number of nodes. We confirm our analytical findings through extensive simulations that include comparisons with MempoolSync, a recent approach from the literature. Our simulations show that SREP incurs reasonable bandwidth overhead and scales gracefully with the size of the network (unlike MempoolSync).  more » « less
Award ID(s):
2210029
PAR ID:
10535407
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
International Journal of Network Management
ISSN:
1055-7148
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The study of power domination in graphs arises from the problem of placing a minimum number of measurement devices in an electrical network while monitoring the entire network. A power dominating set of a graph is a set of vertices from which every vertex in the graph can be observed, following a set of rules for power system monitoring. In this paper, we study the problem of finding a minimum power dominating set which is connected; the cardinality of such a set is called the connected power domination number of the graph. We show that the connected power domination number of a graph is NP-hard to compute in general, but can be computed in linear time in cactus graphs and block graphs. We also give various structural results about connected power domination, including a cut vertex decomposition and a characterization of the effects of various vertex and edge operations on the connected power domination number. Finally, we present novel integer programming formulations for power domination, connected power domination, and power propagation time, and give computational results. 
    more » « less
  2. Francis Bach (Ed.)
    A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph into a large network. We propose two complementary MCMC algorithms for sampling random graph homomorphisms and establish bounds on their mixing times and the concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neighborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut dis- tance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also demonstrate the performance of our frame- work on the tasks of network clustering and subgraph classification on the Facebook100 dataset and on Word Adjacency Networks of a set of classic novels. 
    more » « less
  3. Bach, Francis (Ed.)
    A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph into a large network. We propose two complementary MCMC algorithms for sampling random graph homomorphisms and establish bounds on their mixing times and the concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neighborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut dis- tance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also demonstrate the performance of our frame- work on the tasks of network clustering and subgraph classification on the Facebook100 dataset and on Word Adjacency Networks of a set of classic novels. 
    more » « less
  4. Community detection in graphs, also known as graph partitioning, is a well-studied NP-hard problem. Various heuristic approaches have been adopted to tackle this problem in polynomial time. One such approach, as outlined in the IEEE HPEC Graph Challenge, is Bayesian statistics-based stochastic block partitioning. This method delivers high-quality partitions in sub-quadratic runtime, but it fails to scale to very large graphs. In this paper, we present sampling as an avenue for speeding up the algorithm on large graphs. We first show that existing sampling techniques can preserve a graph’s community structure. We then show that sampling for stochastic block partitioning can be used to produce a speedup of between 2.18× and 7.26× for graph sizes between 5, 000 and 50, 000 vertices without a significant loss in the accuracy of community detection. 
    more » « less
  5. Designing effective algorithms for community detection is an important and challenging problem in large-scale graphs, studied extensively in the literature. Various solutions have been proposed, but many of them are centralized with expensive procedures (requiring full knowledge of the input graph) and have a large running time. In this paper, we present a distributed algorithm for community detection in the stochastic block model (also called planted partition model), a widely-studied and canonical random graph model for community detection and clustering. Our algorithm called CDRW(Community Detection by Random Walks) is based on random walks, and is localized and lightweight, and easy to implement. A novel feature of the algorithm is that it uses the concept of local mixing time to identify the community around a given node. We present a rigorous theoretical analysis that shows that the algorithm can accurately identify the communities in the stochastic block model and characterize the model parameters where the algorithm works. We also present experimental results that validate our theoretical analysis. We also analyze the performance of our distributed algorithm under the CONGEST distributed model as well as the k-machine model, a model for large-scale distributed computations, and show that it can be efficiently implemented. 
    more » « less