ABSTRACT We address the challenge of estimating regression coefficients and selecting relevant predictors in the context of mixed linear regression in high dimensions, where the number of predictors greatly exceeds the sample size. Recent advancements in this field have centered on incorporating sparsity-inducing penalties into the expectation-maximization (EM) algorithm, which seeks to maximize the conditional likelihood of the response given the predictors. However, existing procedures often treat predictors as fixed or overlook their inherent variability. In this paper, we leverage the independence between the predictor and the latent indicator variable of mixtures to facilitate efficient computation and also achieve synergistic variable selection across all mixture components. We establish the non-asymptotic convergence rate of the proposed fast group-penalized EM estimator to the true regression parameters. The effectiveness of our method is demonstrated through extensive simulations and an application to the Cancer Cell Line Encyclopedia dataset for the prediction of anticancer drug sensitivity.
more »
« less
Statistical analysis for a penalized EM algorithm in high-dimensional mixture linear regression model
The expectation-maximization (EM) algorithm and its variants are widely used in statistics. In high-dimensional mixture linear regression, the model is assumed to be a finite mixture of linear regression and the number of predictors is much larger than the sample size. The standard EM algorithm, which attempts to find the maximum likelihood estimator, becomes infeasible for such model. We devise a group lasso penalized EM algorithm and study its statistical properties. Existing theoretical results of regularized EM algorithms often rely on dividing the sample into many independent batches and employing a fresh batch of sample in each iteration of the algorithm. Our algorithm and theoretical analysis do not require sample-splitting, and can be extended to multivariate response cases. The proposed methods also have encouraging performances in numerical studies.
more »
« less
- PAR ID:
- 10535431
- Publisher / Repository:
- https://jmlr.org/
- Date Published:
- Journal Name:
- Journal of machine learning research
- ISSN:
- 1533-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Classical Mixtures of Experts (MoE) are Machine Learning models that involve partitioning the input space, with a separate "expert" model trained on each partition. Recently, MoE-based model architectures have become popular as a means to reduce training and inference costs. There, the partitioning function and the experts are both learnt jointly via gradient descent-type methods on the log-likelihood. In this paper we study theoretical guarantees of the Expectation Maximization (EM) algorithm for the training of MoE models. We first rigorously analyze EM for MoE where the conditional distribution of the target and latent variable conditioned on the feature variable belongs to an exponential family of distributions and show its equivalence to projected Mirror Descent with unit step size and a Kullback-Leibler Divergence regularizer. This perspective allows us to derive new convergence results and identify conditions for local linear convergence; In the special case of mixture of 2 linear or logistic experts, we additionally provide guarantees for linear convergence based on the signal-to-noise ratio. Experiments on synthetic and (small-scale) real-world data supports that EM outperforms the gradient descent algorithm both in terms of convergence rate and the achieved accuracy.more » « less
-
The Expectation-Maximization (EM) algorithm is a widely used method for maximum likelihood estimation in models with latent variables. For estimating mixtures of Gaussians, its iteration can be viewed as a soft version of the k-means clustering algorithm. Despite its wide use and applications, there are essentially no known convergence guarantees for this method. We provide global convergence guarantees for mixtures of two Gaussians with known covariance matrices. We show that the population version of EM, where the algorithm is given access to infinitely many samples from the mixture, converges geometrically to the correct mean vectors, and provide simple, closed-form expressions for the convergence rate. As a simple illustration, we show that, in one dimension, ten steps of the EM algorithm initialized at infinity result in less than 1\% error estimation of the means. In the finite sample regime, we show that, under a random initialization, Õ (d/ϵ2) samples suffice to compute the unknown vectors to within ϵ in Mahalanobis distance, where d is the dimension. In particular, the error rate of the EM based estimator is Õ (dn‾‾√) where n is the number of samples, which is optimal up to logarithmic factors.more » « less
-
Mixture-of-Experts (MoE) is a widely popular model for ensemble learning and is a basic building block of highly successful modern neural networks as well as a component in Gated Recurrent Units (GRU) and Attention networks. However, present algorithms for learning MoE, including the EM algorithm and gradient descent, are known to get stuck in local optima. From a theoretical viewpoint, finding an efficient and provably consistent algorithm to learn the parameters remains a long standing open problem for more than two decades. In this paper, we introduce the first algorithm that learns the true parameters of a MoE model for a wide class of non-linearities with global consistency guarantees. While existing algorithms jointly or iteratively estimate the expert parameters and the gating parameters in the MoE, we propose a novel algorithm that breaks the deadlock and can directly estimate the expert parameters by sensing its echo in a carefully designed cross-moment tensor between the inputs and the output. Once the experts are known, the recovery of gating parameters still requires an EM algorithm; however, we show that the EM algorithm for this simplified problem, unlike the joint EM algorithm, converges to the true parameters. We empirically validate our algorithm on both the synthetic and real data sets in a variety of settings, and show superior performance to standard baselines.more » « less
-
Mixture-of-Experts (MoE) is a widely popular model for ensemble learning and is a basic building block of highly successful modern neural networks as well as a component in Gated Recurrent Units (GRU) and Attention networks. However, present algorithms for learning MoE, including the EM algorithm and gradient descent, are known to get stuck in local optima. From a theoretical viewpoint, finding an efficient and provably consistent algorithm to learn the parameters remains a long standing open problem for more than two decades. In this paper, we introduce the first algorithm that learns the true parameters of a MoE model for a wide class of non-linearities with global consistency guarantees. While existing algorithms jointly or iteratively estimate the expert parameters and the gating parameters in the MoE, we propose a novel algorithm that breaks the deadlock and can directly estimate the expert parameters by sensing its echo in a carefully designed cross-moment tensor between the inputs and the output. Once the experts are known, the recovery of gating parameters still requires an EM algorithm; however, we show that the EM algorithm for this simplified problem, unlike the joint EM algorithm, converges to the true parameters. We empirically validate our algorithm on both the synthetic and real data sets in a variety of settings, and show superior performance to standard baselines.more » « less
An official website of the United States government

