skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AUV Observations of Langmuir Turbulence in a Stratified Shelf Sea
Abstract Measurements collected by a Remote Environmental Monitoring Units (REMUS) 600 autonomous underwater vehicle (AUV) off the coast of southern California demonstrate large-scale coherent wave-driven vortices, consistent with Langmuir turbulence (LT), and played a dominant role in structuring turbulent dissipation within the oceanic surface boundary layer. During a 10-h period with sustained wind speeds of 10 m s−1, Langmuir circulations were limited to the upper third of the surface mixed layer by persistent stratification within the water column. The ensemble-averaged circulation, calculated using conditional averaging of acoustic Doppler dual current profile (AD2CP) velocity profiles using elevated backscattering intensity associated with subsurface bubble clouds, indicates that LT vortex pairs were characterized by an energetic downwelling zone flanked by broader, weaker upwelling regions with vertical velocity magnitudes similar to previous numerical studies of LT. Horizontally distributed microstructure estimates of turbulent kinetic energy dissipation rates were lognormally distributed near the surface in the wave mixing layer with the majority of values falling between wall layer scaling and wave transport layer scaling. Partitioning dissipation rates between downwelling centers and ambient conditions suggests that LT may play a dominant role in elevating dissipation rates in the ocean surface boundary layer (OSBL) by redistributing wave-breaking turbulence.  more » « less
Award ID(s):
1829952 2022738
PAR ID:
10535527
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
54
Issue:
9
ISSN:
0022-3670
Format(s):
Medium: X Size: p. 1903-1920
Size(s):
p. 1903-1920
Sponsoring Org:
National Science Foundation
More Like this
  1. Measurements collected by a REMUS 600 AUV off the coast of southern California demonstrate large-scale coherent wave-driven vortices, consistent with Langmuir turbulence (LT), played a dominant role in structuring turbulent dissipation within the oceanic surface boundary layer. During a 10-hour period with sustained wind speeds of 10 m/s, Langmuir circulations were limited to the upper third of the surface mixed layer by persistent stratification within the water column. The ensemble-averaged circulation, calculated using conditional averaging of AD2CP velocity profiles using elevated backscattering intensity associated with subsurface bubble clouds, indicates that LT vortex pairs were characterized by an energetic downwelling zone flanked by broader, weaker upwelling regions with vertical velocity magnitudes similar to previous numerical studies of LT. Horizontally-distributed microstructure estimates of turbulent kinetic energy dissipation rates were lognormally-distributed near the surface in the wave mixing layer with the majority of values falling between wall layer scaling and wave transport layer scaling. Partitioning dissipation rates between downwelling centers and ambient conditions suggests that LT may play a dominant role in elevating dissipation rates in the OSBL by redistributing wave-breaking turbulence. 
    more » « less
  2. Abstract The turbulent ocean surface boundary layer (OSBL) shoals during daytime solar surface heating, developing a diurnal warm layer (DWL). The DWL significantly influences OSBL dynamics by trapping momentum and heat in a shallow near‐surface layer. Therefore, DWL depth is critical for understanding OSBL transport and ocean‐atmosphere coupling. A great challenge for determining DWL depth is considering wave‐driven Langmuir turbulence (LT), which increases vertical transport. This study investigates observations with moderate wind speeds (4–7 m/s at 10 m height) and swell waves for which breaking wave effects are less pronounced. By employing turbulence‐resolving large eddy simulation experiments that cover observed wind, wave, and heating conditions based on the wave‐averaged Craik‐Lebovich equation, we develop a DWL depth scaling unifying previous approaches. This scaling closely agrees with observed DWL depths from a year‐long mooring deployment in the subtropical North Atlantic, demonstrating the critical role of LT in determining DWL depth and OSBL dynamics. 
    more » « less
  3. Abstract Data from an air–sea interaction tower are used to close the turbulent kinetic energy (TKE) budget in the wave-affected surface layer of the upper ocean. Under energetic wind forcing with active wave breaking, the dominant balance is between the dissipation rate of TKE and the downward convergence in vertical energy flux. The downward energy flux is driven by pressure work, and the TKE transport is upward, opposite to the downgradient assumption in most turbulence closure models. The sign and the relative magnitude of these energy fluxes are hypothesized to be driven by an interaction between the vertical velocity of Langmuir circulation (LC) and the kinetic energy and pressure of wave groups, which is the result of small-scale wave–current interaction. Consistent with previous modeling studies, the data suggest that the horizontal velocity anomaly associated with LC refracts wave energy away from downwelling regions and into upwelling regions, resulting in negative covariance between the vertical velocity of LC and the pressure anomaly associated with the wave groups. The asymmetry between downward pressure work and upward TKE flux is explained by the Bernoulli response of the sea surface, which results in groups of waves having a larger pressure anomaly than the corresponding kinetic energy anomaly, consistent with group-bound long-wave theory. 
    more » « less
  4. Abstract This study investigates how Langmuir turbulence (LT) driven by Stokes drift shear affects the heated ocean surface boundary layer (OSBL) based on turbulence-resolving large-eddy simulations (LES) and assesses an analytic vertical mixing parameterization based on a simplified second-moment closure (SMC) approach. Diurnal solar heating forces OSBL shoaling to generate a diurnal warm layer (DWL) in which heat and momentum are trapped. Without LT, relatively weak turbulent mixing results in a near-surface jet that is associated with enhanced turbulent kinetic energy (TKE) production of shear-driven turbulence (ST), which approximately balances TKE dissipation rates. Conversely, LT maintains strong mixing, delaying the DWL formation and preventing the TKE dissipation enhancement by generating a less sheared jet. However, sufficiently strong heating destroys TKE to ultimately reduce mixing and to create more sheared jets, which effectively shifts the LT to an ST-dominated regime. A second-moment turbulence budget analysis suggests that 1) the near-surface OSBL responds rapidly to the surface forcing, 2) Stokes drift impacts heat and momentum budgets in profoundly different ways, and 3) buoyancy terms are to leading order negligible. Building on these findings and introducing a physics-based mixing length, we develop a simplified SMC model that can be solved for near-surface expressions for key turbulent variables and mixing coefficients in terms of known variables. For ST, these expressions are consistent with the Monin–Obukhov similarity theory. For LT, these expressions reveal a fundamental dependence of turbulent variables on Stokes drift shear. 
    more » « less
  5. This study utilizes a large-eddy simulation (LES) approach to systematically assess the directional variability of wave-driven Langmuir turbulence (LT) in the ocean surface boundary layer (OSBL) under tropical cyclones (TCs). The Stokes drift vector, which drives LT through the Craik–Leibovich vortex force, is obtained through spectral wave simulations. LT’s direction is identified by horizontally elongated turbulent structures and objectively determined from horizontal autocorrelations of vertical velocities. In spite of a TC’s complex forcing with great wind and wave misalignments, this study finds that LT is approximately aligned with the wind. This is because the Reynolds stress and the depth-averaged Lagrangian shear (Eulerian plus Stokes drift shear) that are key in determining the LT intensity (determined by normalized depth-averaged vertical velocity variances) and direction are also approximately aligned with the wind relatively close to the surface. A scaling analysis of the momentum budget suggests that the Reynolds stress is approximately constant over a near-surface layer with predominant production of turbulent kinetic energy by Stokes drift shear, which is confirmed from the LES results. In this layer, Stokes drift shear, which dominates the Lagrangian shear, is aligned with the wind because of relatively short, wind-driven waves. On the contrary, Stokes drift exhibits considerable amount of misalignments with the wind. This wind–wave misalignment reduces LT intensity, consistent with a simple turbulent kinetic energy model. Our analysis shows that both the Reynolds stress and LT are aligned with the wind for different reasons: the former is dictated by the momentum budget, while the latter is controlled by wind-forced waves. 
    more » « less