The development of reaction pathways and ancillary ligand scaffolds is essential in the pursuit of higher nuclearity rare earth metal clusters that are relevant in storage materials and catalysis. Guanidinate anions represent attractive ligands due to their high degree of customizability allowing for facile alterations of both their steric and electronic properties. Here, we demonstrate an unprecedented bridge splitting reaction that shifts chloride anions in favor of a bridging neutral pyrazine to give pyrazine‐bridged dinuclear guanidinate rare earth complexes, [{(Me3Si)2NC(NiPr)2}2RECl]2(
Over the years, polynuclear cyclic or torus complexes have attracted increasing interest due to their unique metal topologies and properties. However, the isolation of polynuclear cyclic organometallic complexes is extremely challenging due to their inherent reactivity, which stems from the labile and reactive metal‐carbon bonds. In this study, the pyrazine ligand undergoes a radical‐radical cross‐coupling reaction leading to the formation of a decanuclear [(Cp*)20Dy10(L1)10] ⋅ 12(C7H8) (
- PAR ID:
- 10535535
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 136
- Issue:
- 46
- ISSN:
- 0044-8249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract μ ‐pyz) (RE =Y (1 ) and Er (2 ), pyz=pyrazine). Each six‐coordinate metal center is ligated by two guanidinates, one chloride ligand, and one nitrogen atom from the bridging pyrazine unit. The molecules were characterized by X‐ray crystallography, IR, NMR, and UV‐Vis spectroscopy. DFT calculations conducted on1 provide insight into both the bonding picture and the mechanism of complex formation. This type of reaction constitutes a seminal application of a bridge splitting mechanism to the rare earth metals. -
Abstract Exploration of the reduction chemistry of the 2,2’‐bipyridine (bipy) lanthanide metallocene complexes Cp*2LnCl(bipy) and Cp*2Ln(bipy) (Cp* = C5Me5) resulted in the isolation of a series of complexes with unusual composition and structure including complexes with a single Cp* ligand, multiple azide ligands, and bipy ligands with close parallel orientations. These results not only reveal new structural types, but they also show the diverse chemistry displayed by this redox‐active platform. Treatment of Cp*2NdCl(bipy) with excess KC8resulted in the formation of the mono‐Cp* Nd(III) complex, [K(crypt)]2[Cp*Nd(bipy)2],
1 , as well as [K(crypt)][Cp*2NdCl2],2 , and the previously reported [K(crypt)][Cp*2Nd(bipy)]. A mono‐Cp* Lu(III) complex, Cp*Lu(bipy)2,3 , was also found in an attempt to make Cp*2Lu(bipy) from LuCl3, 2 equiv. of KCp*, bipy, and K/KI. Surprisingly, the (bipy)1−ligands in neighboring molecules in the structure of3 are oriented in a parallel fashion with intermolecular C⋅⋅⋅C distances of 3.289(4) Å, which are shorter than the sum of van der Waals radii of two carbon atoms, 3.4 Å. Another product with one Cp* ligand per lanthanide was isolated from the reaction of [K(crypt)][Cp*2Eu(bipy)] with azobenzene, which afforded the dimeric Eu(II) complex, [K(crypt)]2[Cp*Eu(THF)(PhNNPh)]2,4 . Attempts to make4 from the reaction between Cp*2Eu(THF)2and a reduced azobenzene anion generated instead the mixed‐valent Eu(III)/Eu(II) complex, [K(crypt)][Cp*Eu(THF)(PhNNPh)]2,5 , which allows direct comparison with the bimetallic Eu(II) complex4 . Mono‐Cp* complexes of Yb(III) are obtained from reactions of the Yb(II) complex, [K(crypt)][Cp*2Yb(bipy)], with trimethylsilylazide, which afforded the tetra‐azido [K(crypt)]2[Cp*Yb(N3)4],6 , or the di‐azido complex [K(crypt)]2[Cp*Yb(N3)2(bipy)],7 a , depending on the reaction stoichiometry. A mono‐Cp* Yb(III) complex is also isolated from reaction of [K(crypt)][Cp*2Yb(bipy)] with elemental sulfur which forms the mixed polysulfido Yb(III) complex [K(crypt)]2[Cp*Yb(S4)(S5)],8 a . In contrast to these reactions that form mono‐Cp* products, reduction of Cp*2Yb(bipy) with 1 equiv. of KC8in the presence of 18‐crown‐6 resulted in the complete loss of Cp* ligands and the formation of [K(18‐c‐6)(THF)][Yb(bipy)4],9 . The (bipy)1−ligands of9 are arranged in a parallel orientation, as observed in the structure of3 , except in this case this interaction is intramolecular and involves pairs of ligands bound to the same Yb atom. Attempts to reduce further the Sm(II) (bipy)1−complex, Cp*2Sm(bipy) with 2 equiv. of KC8in the presence of excess 18‐crown‐6 led to the isolation of a Sm(III) salt of (bipy)2−with an inverse sandwich Cp* counter‐cation and a co‐crystallized K(18‐c‐6)Cp* unit, [K2(18‐c‐6)2Cp*]2[Cp*2Sm(bipy)]2 ⋅ [K(18‐c‐6)Cp*],10 . -
Abstract A new series of mono‐ and bis‐alkynyl CoIII(TIM) complexes (TIM=2,3,9,10‐tetramethyl‐1,4,8,11‐tetraazacyclotetradeca‐1,3,8,10‐tetraene) is reported herein. The
trans ‐[Co(TIM)(C2R)Cl]+complexes were prepared from the reaction betweentrans ‐[Co(TIM)Cl2]PF6and HC2R (R=tri(isopropyl)silyl or TIPS (1 ), ‐C6H4‐4‐tBu (2 ), ‐C6H4‐4‐NO2(3 a ), andN ‐mesityl‐1,8‐naphthalimide or NAPMes(4 a )) in the presence of Et3N. The intermediate complexes of the typetrans ‐[Co(TIM)(C2R)(NCMe)](PF6)(OTf),3 b and4 b , were obtained by treating3 a and4 a , respectively, with AgOTf in CH3CN. Furthermore, bis‐alkynyltrans ‐[Co(TIM)(C2R)2]PF6complexes,3 c and4 c , were generated following a second dehydrohalogenation reaction between3 b and4 b , respectively, and the appropriate HC2R in the presence of Et3N. These new complexes have been characterized using X‐ray diffraction (2 ,3 a ,4 a , and4 c ), IR,1H NMR, UV/Vis spectroscopy, fluorescent spectroscopy (4 c ), and cyclic voltammetry. -
Abstract The description of π‐donor amido moieties as ‘weak‐field’ ligands can belie the influence of metal‐ligand covalency on the overall ligand field of coordination complexes, which can in turn influence properties including the magnetic ground state and those of their excited states. In this contribution, the ligand fields of pseudo‐octahedral Ni(II) complexes supported by diarylamido pincer‐type amido ligands – three previously reported examples supported by asymmetric (2‐R‐phenanthridin‐4‐yl)(8‐quinolinyl)amido ligands (R = Cl, CF3,
t Bu;R L1 ) along with a new congener bearing a symmetricbis (8‐quinolinyl)amido ligand (BQA;L2 ) – were investigated in two ways. First, high‐frequency and ‐field electron paramagnetic resonance spectroscopy (HFEPR), SQUID magnetometry, and electronic absorption spectroscopy were used to determine the ligand field parameters. Second, the ability to electrochemically address ligand‐based oxidations despite metal‐centered SOMOs in the parentS =1 paramagnets was investigated, supported by time‐dependent density functional theory (TDDFT) identification of strong intervalence charge‐transfer (IVCT) transitions attributed to electronic communication between two Namidomoieties mediated by a Ni(II) bridge. These findings are discussed in the broader context of 3d transition metal coordination complexes of weak‐field π‐donor ligands. -
We report here the characterization in solution (NMR, luminescence, MS) and the solid-state (X-ray crystallography, IR) of complexes between phenacyldiphenylphosphine oxide and five Ln( iii ) ions (Sm, Eu, Gd, Tb, Dy). Four single crystal X-ray structures are described here showing a 1 : 2 ratio between the Ln 3+ ions Eu, Dy, Sm and Gd and the ligand, where the phosphine oxide ligands are bound in a monodentate manner to the metal center. A fifth structure is reported for the 1 : 2 Eu(NO 3 ) 3 -ligand complex showing bidentate binding between the two ligands and the metal center. The solution coordination chemistry of these metal complexes was probed by 1 H, 13 C and 31 P NMR, mass spectrometry, and luminescence experiments. The title ligand has the capability to sensitize Tb 3+ , Dy 3+ , Eu 3+ and Sm 3+ leading to metal-centered emission in solutions of acetonitrile and methanol and in the solid state.more » « less