We develop representation theoretic techniques to construct three dimensional non-semisimple topological quantum field theories which model homologically truncated topological B-twists of abelian Gaiotto--Witten theory with linear matter. Our constructions are based on relative modular structures on the category of weight modules over an unrolled quantization of a Lie superalgebra. The Lie superalgebra, originally defined by Gaiotto and Witten, is associated to a complex symplectic representation of a metric abelian Lie algebra. The physical theories we model admit alternative realizations as Chern--Simons-Rozansky--Witten theories and supergroup Chern--Simons theories and include as particular examples global forms of gl(1,1)-Chern--Simons theory and toral Chern--Simons theory. Fundamental to our approach is the systematic incorporation of non-genuine line operators which source flat connections for the topological flavour symmetry of the theory.
more »
« less
Going To The Other Side Via The Resurgent Bridge
Using resurgent analysis we offer a novel mathematical perspective on a curious bijection (duality) that has many potential applications ranging from the theory of vertex algebras to the physics of SCFTs in various dimensions, to q-series invariants in low-dimensional topology that arise e.g. in Vafa-Witten theory and in non-perturbative completion of complex Chern-Simons theory. In particular, we introduce explicit numerical algorithms that efficiently implement this bijection. This bijection is founded on preservation of relations, a fundamental property of resurgent functions. Using resurgent analysis we find new structures and patterns in complex Chern-Simons theory on closed hyperbolic 3-manifolds obtained by surgeries on hyperbolic twist knots. The Borel plane exhibits several intriguing hints of a new form of integrability. An important role in this analysis is played by the twisted Alexander polynomials and the adjoint Reidemeister torsion, which help us determine the Stokes data. The method of singularity elimination enables extraction of geometric data even for very distant Borel singularities, leading to detailed non-perturbative information from perturbative data. We also introduce a new double-scaling limit to probe 0-surgeries from the limiting r → ∞ behavior of 1 r surgeries, and apply it to the family of hyperbolic twist knots.
more »
« less
- Award ID(s):
- 2206241
- PAR ID:
- 10535610
- Editor(s):
- arXiv
- Publisher / Repository:
- arXiv
- Date Published:
- Subject(s) / Keyword(s):
- Chern-Simons theory Resurgence Modularity
- Format(s):
- Medium: X
- Institution:
- arXiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A bstract The superpotential in four-dimensional heterotic effective theories contains terms arising from holomorphic Chern-Simons invariants associated to the gauge and tangent bundles of the compactification geometry. These effects are crucial for a number of key features of the theory, including vacuum stability and moduli stabilization. Despite their importance, few tools exist in the literature to compute such effects in a given heterotic vacuum. In this work we present new techniques to explicitly determine holomorphic Chern-Simons invariants in heterotic string compactifications. The key technical ingredient in our computations are real bundle morphisms between the gauge and tangent bundles. We find that there are large classes of examples, beyond the standard embedding, where the Chern-Simons superpotential vanishes. We also provide explicit examples for non-flat bundles where it is non-vanishing and non-integer quantized, generalizing previous results for Wilson lines.more » « less
-
Kronheimer and Mrowka asked whether the difference between the four-dimensional clasp number and the slice genus can be arbitrarily large. This question is answered affirmatively by studying a knot invariant derived from equivariant singular instanton theory, and which is closely related to the Chern-Simons functional. This also answers a conjecture of Livingston about slicing numbers. Also studied is the singular instanton Frøyshov invariant of a knot. If defined with integer coefficients, this gives a lower bound for the unoriented slice genus, and is computed for quasi-alternating and torus knots. In contrast, for certain other coefficient rings, the invariant is identified with a multiple of the knot signature. This result is used to address a conjecture by Poudel and Saveliev about traceless SU(2) representations of torus knots. Further, for a concordance between knots with non-zero signature, it is shown that there is a traceless representation of the concordance complement which restricts to non-trivial representations of the knot groups. Finally, some evidence towards an extension of the slice-ribbon conjecture to torus knots is provided.more » « less
-
If a knot K in S^3 admits a pair of truly cosmetic surgeries, we show that the surgery slopes are either ±2 or ±1/q for some value of q that is explicitly determined by the knot Floer homology of K. Moreover, in the former case the genus of K must be 2, and in the latter case there is a bound relating q to the genus and the Heegaard Floer thickness of K. As a consequence, we show that the cosmetic crossing conjecture holds for alternating knots (or more generally, Heegaard Floer thin knots) with genus not equal to 2. We also show that the conjecture holds for any knot K for which each prime summand of K has at most 16 crossings; our techniques rule out cosmetic surgeries in this setting except for slopes ±1 and ±2 on a small number of knots, and these remaining examples can be checked by comparing hyperbolic invariants. These results make use of the surgery formula for Heegaard Floer homology, which has already proved to be a powerful tool for obstructing cosmetic surgeries; we get stronger obstructions than previously known by considering the full graded theory. We make use of a new graphical interpretation of knot Floer homology and the surgery formula in terms of immersed curves, which makes the grading information we need easier to access.more » « less
-
A<sc>bstract</sc> In this paper, we discuss how gauging one-form symmetries in Chern-Simons theories is implemented in an A-twisted topological open string theory. For example, the contribution from a fixed H/Z bundle on a three-manifold M, arising in a BZ gauging of H Chern-Simons, for Z a finite subgroup of the center of H, is described by an open string worldsheet theory whose bulk is a sigma model with target a Z-gerbe (a bundle of one-form symmetries) over T∗M, of characteristic class determined by the H/Z bundle. We give a worldsheet picture of the decomposition of one-form-symmetry-gauged Chern-Simons in three dimensions, and we describe how a target-space constraint on bundles arising in the gauged Chern-Simons theory has a natural worldsheet realization. Our proposal provides examples of the expected correspondence between worldsheet global higher-form symmetries, and target-space gauged higher-form symmetries.more » « less
An official website of the United States government

