We present UV–optical–near-infrared observations and modeling of supernova (SN) 2024ggi, a type II supernova (SN II) located in NGC 3621 at 7.2 Mpc. Early-time (“flash”) spectroscopy of SN 2024ggi within +0.8 days of discovery shows emission lines of H
This content will become publicly available on July 31, 2025
We present ultraviolet/optical/near-infrared observations and modeling of Type II supernovae (SNe II) whose early time (
- PAR ID:
- 10535662
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- AAS
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 970
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 189
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract i , Hei , Ciii , and Niii with a narrow core and broad, symmetric wings (i.e., “IIn-like”) arising from the photoionized, optically thick, unshocked circumstellar material (CSM) that surrounded the progenitor star at shock breakout (SBO). By the next spectral epoch at +1.5 days, SN 2024ggi showed a rise in ionization as emission lines of Heii , Civ , Niv/v , and Ov became visible. This phenomenon is temporally consistent with a blueward shift in the UV–optical colors, both likely the result of SBO in an extended, dense CSM. The IIn-like features in SN 2024ggi persist on a timescale oft IIn= 3.8 ± 1.6 days, at which time a reduction in CSM density allows the detection of Doppler-broadened features from the fastest SN material. SN 2024ggi has peak UV–optical absolute magnitudes ofM w2= −18.7 mag andM g= −18.1 mag, respectively, that are consistent with the known population of CSM-interacting SNe II. Comparison of SN 2024ggi with a grid of radiation hydrodynamics and non–local thermodynamic equilibrium radiative-transfer simulations suggests a progenitor mass-loss rate of yr−1(v w = 50 km s−1), confined to a distance ofr < 5 × 1014cm. Assuming a wind velocity ofv w = 50 km s−1, the progenitor star underwent an enhanced mass-loss episode in the last ∼3 yr before explosion. -
Abstract We present high-cadence optical and ultraviolet (UV) observations of the Type II supernova (SN), SN 2022jox which exhibits early spectroscopic high-ionization flash features of H
i , Heii , Civ , and Niv that disappear within the first few days after explosion. SN 2022jox was discovered by the Distance Less Than 40 Mpc survey ∼0.75 day after explosion with follow-up spectra and UV photometry obtained within minutes of discovery. The SN reached a peak brightness ofM V ∼ −17.3 mag, and has an estimated56Ni mass of 0.04M ⊙, typical values for normal Type II SNe. The modeling of the early light curve and the strong flash signatures present in the optical spectra indicate interaction with circumstellar material (CSM) created from a progenitor with a mass-loss rate of . There may also be some indication of late-time CSM interaction in the form of an emission line blueward of Hα seen in spectra around 200 days. The mass-loss rate of SN 2022jox is much higher than the values typically associated with quiescent mass loss from red supergiants, the known progenitors of Type II SNe, but is comparable to inferred values from similar core-collapse SNe with flash features, suggesting an eruptive event or a superwind in the progenitor in the months or years before explosion. -
Abstract We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time (
flash ) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of Hi , Hei/ii , Civ , and Niii/iv/v with a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density atr ≳ 1015cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g.,M u = −18.6 mag,M g = −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer codeCMFGEN and the radiation-hydrodynamics codeHERACLES suggests dense, solar-metallicity CSM confined tor = (0.5–1) × 1015cm, and a progenitor mass-loss rate of yr−1. For the assumed progenitor wind velocity ofv w = 50 km s−1, this corresponds to enhanced mass loss (i.e.,superwind phase) during the last ∼3–6 yr before explosion. -
Abstract Among the supernovae (SNe) that show strong interaction with a circumstellar medium (CSM), there is a rare subclass of Type Ia supernovae, SNe Ia-CSM, which show strong narrow hydrogen emission lines much like SNe IIn but on top of a diluted Type Ia spectrum. The only previous systematic study of this class identified 16 SNe Ia-CSM, eight historic and eight from the Palomar Transient Factory (PTF). Now using the successor survey to PTF, the Zwicky Transient Facility (ZTF), we have classified 12 additional SNe Ia-CSM through the systematic Bright Transient Survey (BTS). Consistent with previous studies, we find these SNe to have slowly evolving optical light curves with peak absolute magnitudes between −19.1 and −21, spectra having weak H
β and large Balmer decrements of ∼7. Out of the 10 SNe from our sample observed by NEOWISE, nine have 3σ detections, with some SNe showing a reduction in the red wing of Hα , indicative of newly formed dust. We do not find our SN Ia-CSM sample to have a significantly different distribution of equivalent widths of Hei λ 5876 than SNe IIn as observed in Silverman et al. The hosts tend to be late-type galaxies with recent star formation. We derive a rate estimate of Gpc−3yr−1for SNe Ia-CSM, which is ∼0.02%–0.2% of the SN Ia rate. We also identify six ambiguous SNe IIn/Ia-CSM in the BTS sample and including them gives an upper limit rate of 0.07%–0.8%. This work nearly doubles the sample of well-studied Ia-CSM objects in Silverman et al., increasing the total number to 28. -
Abstract SN 2023ixf was discovered in M101 within a day of the explosion and rapidly classified as a Type II supernova with flash features. Here we present ultraviolet (UV) spectra obtained with the Hubble Space Telescope 14, 19, 24, and 66 days after the explosion. Interaction between the supernova ejecta and circumstellar material (CSM) is seen in the UV throughout our observations in the flux of the first three epochs and asymmetric Mg
ii emission on day 66. We compare our observations to CMFGEN supernova models that include CSM interaction (M ⊙yr−1) and find that the power from CSM interaction is decreasing with time, fromL sh≈ 5 × 1042erg s−1toL sh≈ 1 × 1040erg s−1between days 14 and 66. We examine the contribution of individual atomic species to the spectra on days 14 and 19, showing that the majority of the features are dominated by iron, nickel, magnesium, and chromium absorption in the ejecta. The UV spectral energy distribution of SN 2023ixf sits between that of supernovae, which show no definitive signs of CSM interaction, and those with persistent signatures assuming the same progenitor radius and metallicity. Finally, we show that the evolution and asymmetric shape of the Mgii λ λ 2796, 2802 emission are not unique to SN 2023ixf. These observations add to the early measurements of dense, confined CSM interaction, tracing the mass-loss history of SN 2023ixf to ∼33 yr prior to the explosion and the density profile to a radius of ∼5.7 × 1015cm. They show the relatively short evolution from a quiescent red supergiant wind to high mass loss.