skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2025

Title: Elucidating the use of pressure-recovery diagrams for analyzing energy consumption in reverse osmosis desalination
The pressure-recovery (P-Y) diagram used in reverse osmosis (RO) literature to compare energy consumptions in different RO configurations has a flaw of not holding the design flux constant. In this work, the P-Y diagrams are constructed with the aid of transport models. It is shown that the area underneath the P-Y curve represents the specific energy consumption (SEC) imposed by design flux and thermodynamics, which may be reduced by improving spatial uniformity in flux. The trend generally observes the equipartition of entropy production theorem. For seawater RO (SWRO) in which pressure drop relative to feed osmotic pressure is small and operation is near the thermodynamic limit, staged designs with interstage booster pumps enable a more uniform flux, thus reducing the SEC. However, for low-salinity brackish water RO (BWRO), improving flux uniformity may lead to a higher SEC as the increased friction loss often outweighs the reduced energy requirement imposed by system flux.  more » « less
Award ID(s):
2140946
PAR ID:
10535749
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Desalination
ISSN:
0011-9164
Page Range / eLocation ID:
118033
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To implement sustainable water resource management, the industries that produce a huge amount of wastewater are aiming to recycle wastewater. Reverse osmosis (RO) is an advanced membrane process that can produce potable water from wastewater. However, the presence of diverse pollutants in the wastewater necessitates effective pretreatment to ensure successful RO implementation. This study evaluated the efficiency of microfiltration (MF) and ultrafiltration (UF) as two pretreatment methods prior to RO, i.e., MF-RO and UF-RO, for recycling poultry slaughterhouse wastewater (PSWW). The direct treatment of PSWW with RO (direct RO) was also considered for comparison. In this study, membrane technology serves as a post treatment for PSWW, which was conventionally treated at Sanderson Farm. The results demonstrated that all of the processes, including MF-RO, UF-RO, and direct RO treatment of PSWW, rejected 100% of total phosphorus (TP), over 91.2% of chemical oxygen demand (COD), and 87% of total solids (TSs). Total nitrogen (TN) levels were reduced to 5 mg/L for MF-RO, 4 mg/L for UF-RO, and 9 mg/L for direct RO. In addition, the pretreatment of PSWW with MF and UF increased RO flux from 46.8 L/m2 h to 51 L/m2 h, an increase of approximately 9%. The product water obtained after MF-RO, UF-RO, and direct RO meets the required potable water quality standards for recycling PSWW in the poultry industry. A cost analysis demonstrated that MF-RO was the most economical option among membrane processes, primarily due to MF operating at a lower pressure and having a high water recovery ratio. In contrast, the cost of using RO without MF and UF pretreatments was approximately 2.6 times higher because of cleaning and maintenance expenses related to fouling. This study concluded that MF-RO is a preferable option for recycling PSWW. This pretreatment method would significantly contribute to environmental sustainability by reusing well-treated PSWW for industrial poultry purposes while maintaining cost efficiency. 
    more » « less
  2. Abstract Estimation of uncertainties (random error statistics) of radio occultation (RO) observations is important for their effective assimilation in numerical weather prediction (NWP) models. Average uncertainties can be estimated for large samples of RO observations and these statistics may be used for specifying the observation errors in NWP data assimilation. However, the uncertainties of individual RO observations vary, and so using average uncertainty estimates will overestimate the uncertainties of some observations and underestimate those of others, reducing their overall effectiveness in the assimilation. Several parameters associated with RO observations or their atmospheric environments have been proposed to estimate individual RO errors. These include the standard deviation of bending angle (BA) departures from either climatology in the upper stratosphere and lower mesosphere (STDV) or the sample mean between 40 and 60 km (STD4060), the local spectral width (LSW), and the magnitude of the horizontal gradient of refractivity (|∇HN|). In this paper we show how the uncertainties of two RO datasets, COSMIC-2 and Spire BA, as well as their combination, vary with these parameters. We find that the uncertainties are highly correlated with STDV and STD4060 in the stratosphere, and with LSW and |∇HN| in the lower troposphere. These results suggest a hybrid error model for individual BA observations that uses an average statistical model of RO errors modified by STDV or STD4060 above 30 km, and LSW or |∇HN| below 8 km. Significance StatementThese results contribute to the understanding of the sources of uncertainties in radio occultation observations. They could be used to improve the effectiveness of these observations in their assimilation into numerical weather prediction and reanalysis models by improving the estimation of their observational errors. 
    more » « less
  3. Abstract Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are now widely found in aquatic ecosystems, including sources of drinking water and portable water, due to their increasing prevalence. Among different PFAS treatment or separation technologies, nanofiltration (NF) and reverse osmosis (RO) both yield high rejection efficiencies (>95%) of diverse PFAS in water; however, both technologies are affected by many intrinsic and extrinsic factors. This study evaluated the rejection of PFAS of different carbon chain length (e.g., PFOA and PFBA) by two commercial RO and NF membranes under different operational conditions (e.g., applied pressure and initial PFAS concentration) and feed solution matrixes, such as pH (4–10), salinity (0‐ to 1000‐mM NaCl), and organic matters (0–10 mM). We further performed principal component analysis (PCA) to demonstrate the interrelationships of molecular weight (213–499 g·mol−1), membrane characteristics (RO or NF), feed water matrices, and operational conditions on PFAS rejection. Our results confirmed that size exclusion is a primary mechanism of PFAS rejection by RO and NF, as well as the fact that electrostatic interactions are important when PFAS molecules have sizes less than the NF membrane pores. Practitioner PointsTwo commercial RO and NF membranes were both evaluated to remove 10 different PFAS.High transmembrane pressures facilitated permeate recovery and PFAS rejection by RO.Electrostatic repulsion and pore size exclusion are dominant rejection mechanisms for PFAS removal.pH, ionic strength, and organic matters affected PFAS rejection.Mechanisms of PFAS rejection with RO/NF membranes were explained by PCA analysis. 
    more » « less
  4. null (Ed.)
    We study hydrodynamics, heat transfer, and entropy generation in pressure-driven microchannel flow of a power-law fluid. Specifically, we address the effect of asymmetry in the slip boundary condition at the channel walls. Constant, uniform but unequal heat fluxes are imposed at the walls in this thermally developed flow. The effect of asymmetric slip on the velocity profile, on the wall shear stress, on the temperature distribution, on the Bejan number profiles, and on the average entropy generation and the Nusselt number are established through the numerical evaluation of exact analytical expressions derived. Specifically, due to asymmetric slip, the fluid momentum flux and thermal energy flux are enhanced along the wall with larger slip, which, in turn, shifts the location of the velocity's maximum to an off-center location closer to the said wall. Asymmetric slip is also shown to redistribute the peaks and plateaus of the Bejan number profile across the microchannel, showing a sharp transition between entropy generation due to heat transfer and due to fluid flow at an off-center-line location. In the presence of asymmetric slip, the difference in the imposed heat fluxes leads to starkly different Bejan number profiles depending on which wall is hotter, and whether the fluid is shear-thinning or shear-thickening. Overall, slip is shown to promote uniformity in both the velocity field and the temperature field, thereby reducing irreversibility in this flow. 
    more » « less
  5. To address some challenges of food security and sustainability of the poultry processing industry, a sequential membrane process of ultrafiltration (UF), forward osmosis (FO), and reverse osmosis (RO) is proposed to treat semi-processed poultry slaughterhouse wastewater (PSWW) and water recovery. The pretreatment of PSWW with UF removed 36.7% of chemical oxygen demand (COD), 38.9% of total phosphorous (TP), 24.7% of total solids (TS), 14.5% of total volatile solids (TVS), 27.3% of total fixed solids (TFS), and 12.1% of total nitrogen (TN). Then, the PSWW was treated with FO membrane in FO mode, pressure retarded osmosis (PRO) mode, and L-DOPA coated membrane in the PRO mode. The FO mode was optimal for PSWW treatment by achieving the highest average flux of 10.4 ± 0.2 L/m2-h and the highest pollutant removal efficiency; 100% of COD, 100% of TP, 90.5% of TS, 85.3% of TVS, 92.1% of TFS, and 37.2% of TN. The performance of the FO membrane was entirely restored by flushing the membrane with 0.1% sodium dodecyl sulfate solution. RO significantly removed COD, TS, TVS, TFS, and TP. However, TN was reduced by only 62% because of the high ammonia concentration present in the draw solution. Overall, the sequential membrane process (UF-FO-RO) showed excellent performance by providing high rejection efficiency for pollutant removal and water recovery. 
    more » « less