Sudden onsets in the visual periphery elicit reflexive shifts of covert exogenous spatial attention. Here, we asked: are the behavioral effects of such an irrelevant exogenous cue modulated by implicit knowledge about the probability of the cue’s presence? Participants discriminated the orientation of a visual target that was preceded, on some trials, by an abrupt-onset task-irrelevant disk (exogenous cue). A color at fixation (red or green) signaled the probability that a cue would appear (0.8, “high- probability”, or 0.2, “low-probability”). When presented, this cue flashed briefly in the periphery, either near the target (valid cue) or non-target stimulus (invalid cue, equally likely). We used a speed- accuracy tradeoff (SAT) procedure to vary the time given for participants to process the stimuli before responding. We found that low-probability cues generated significantly larger cueing effects (discrimination accuracy, valid–invalid) than high-probability cues, but only when responses were made early in the accumulation of visual information (i.e., under strict time pressure). Both the directionality and temporal dynamics of these results were replicated across a series of online studies. Thus, expectations about an exogenous cue’s presence or absence have a significant yet transient impact on its ability to direct the reflexive allocation of covert exogenous spatial attention.
more »
« less
Cue relevance drives early quitting in visual search
Abstract Irrelevant salient distractors can trigger early quitting in visual search, causing observers to miss targets they might otherwise find. Here, we asked whether task-relevant salient cues can produce a similar early quitting effect on the subset of trials where those cues fail to highlight the target. We presented participants with a difficult visual search task and used two cueing conditions. In the high-predictive condition, a salient cue in the form of a red circle highlighted the target most of the time a target was present. In the low-predictive condition, the cue was far less accurate and did not reliably predict the target (i.e., the cue was often a false positive). These were contrasted against a control condition in which no cues were presented. In the high-predictive condition, we found clear evidence of early quitting on trials where the cue was a false positive, as evidenced by both increased miss errors and shorter response times on target absent trials. No such effects were observed with low-predictive cues. Together, these results suggest that salient cues which are false positives can trigger early quitting, though perhaps only when the cues have a high-predictive value. These results have implications for real-world searches, such as medical image screening, where salient cues (referred to as computer-aided detection or CAD) may be used to highlight potentially relevant areas of images but are sometimes inaccurate.
more »
« less
- Award ID(s):
- 2218384
- PAR ID:
- 10535825
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Cognitive Research: Principles and Implications
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2365-7464
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Observers routinely make errors in almost any visual search task. In previous online experiments, we found that indiscriminately highlighting all item positions in a noisy search display reduces errors. In the present paper, we conducted two eye tracking studies to investigate the mechanics of this error reduction: does cueing direct attention to previously overlooked regions or enhance attention/processing at cued locations? Displays were presented twice. In Experiment 1, for half of the displays, the cue was only presented on the first copy (Cue - noCue) and for the other half, only presented on the second copy (noCue - Cue). Cueing successfully reduced errors but did not significantly affect RTs. This contrasts with the online experiment where the cue increased RTs while reducing errors. In Experiment 2, we replicated the design of the online experiment by splitting the displays into noCue – noCue and noCue – Cue pairs. We now found that the cue reduced errors, but increased RTs on trials with high- contrast targets. The eye tracking data shows that participants fixated closer to items and fixation durations were shorter in cued displays. The smaller fixation-item distance reduced search errors, where observers never fixated the target, for low contrast targets and the remaining low-contrast errors seemed to be recognition errors, where observers looked at the target but quickly looked away. Taken together, these results suggest that errors were reduced because attention was more properly directed to overlooked regions by the cues instead of being enhanced at the cued areas.more » « less
-
Abstract Humans and other animals are capable of reasoning. However, there are overwhelming examples of errors or anomalies in reasoning. In two experiments, we studied if rats, like humans, estimate the conjunction of two events as more likely than each event independently, a phenomenon that has been called conjunction fallacy. In both experiments, rats learned through food reinforcement to press a lever under some cue conditions but not others. Sound B was rewarded whereas Sound A was not. However, when B was presented with the visual cue Y was not rewarded, whereas AX was rewarded (i.e., A-, AX+, B+, BY-). Both visual cues were presented in the same bulb. After training, rats received test sessions in which A and B were presented with the bulb explicitly off or occluded by a metal piece. Thus, on the occluded condition, it was ambiguous whether the trials were of the elements alone (A or B) or of the compounds (AX or BY). Rats responded on the occluded condition as if the compound cues were most likely present. The second experiment investigated if this error in probability estimation in Experiment 1, could be due to a conjunction fallacy, and if this could be attenuated by increasing the ratio of element/compound trials from the original 50-50 to 70-30 and 90-10. Only the 90-10 condition (where 90% of the training trials were of just A or just B) did not show a conjunction fallacy, though it emerged in all groups with additional training. These findings open new avenues for exploring the mechanisms behind the conjunction fallacy effect.more » « less
-
Abstract Attention to a feature enhances the sensory representation of that feature. However, it is less clear whether attentional modulation is limited when needing to attend to multiple features. Here, we studied both the behavioral and neural correlates of the attentional limit by examining the effectiveness of attentional enhancement of one versus two color features. We recorded electroencephalography (EEG) while observers completed a color-coherence detection task in which they detected a weak coherence signal, an over-representation of a target color. Before stimulus onset, we presented either one or two valid color cues. We found that, on the one-cue trials compared with the two-cue trials, observers were faster and more accurate, indicating that observers could more effectively attend to a single color at a time. Similar behavioral deficits associated with attending to multiple colors were observed in a pre-EEG practice session with one-, two-, three-, and no-cue trials. Further, we were able to decode the target color using the EEG signals measured from the posterior electrodes. Notably, we found that decoding accuracy was greater on the one-cue than on two-cue trials, indicating a stronger color signal on one-cue trials likely due to stronger attentional enhancement. Lastly, we observed a positive correlation between the decoding effect and the behavioral effect comparing one-cue and two-cue trials, suggesting that the decoded neural signals are functionally associated with behavior. Overall, these results provide behavioral and neural evidence pointing to a strong limit in the attentional enhancement of multiple features and suggest that there is a cost in maintaining multiple attentional templates in an active state.more » « less
-
Judgement bias tasks (JBTs) are used to assess the emotional state and welfare of animals in zoos, farms and laboratories, based on the interpretation of an ambiguous or intermediate cue. Animals in positive affective states are more likely to interpret the ambiguous cue positively, whereas animals experiencing negative affect are more likely to interpret ambiguous cues pessimistically. Here, we developed a modified JBT assay for the stumpy-spined cuttlefish,Sepia bandensis, to determine whether cuttlefish exhibit negative affective states resulting from external stressors. Positive and neutral visual cues were presented twice daily until animals learned to associate food with the reinforced visual cue. After training, one treatment group was exposed to combined exposure and handling stress produced by 6 days of impoverished housing and simulated net capture. Our control group received no stress experience. In test trials performed after the stress experience, stressed animals showed higher latencies to approach ambiguous cues, spent significantly less time in rooms with ambiguous cues once they entered, and were less likely to enter first into the ambiguous cue-paired room compared with controls. These behaviours suggest that stress induces pessimistic judgement bias in cuttlefish, the first indication of this capacity in cephalopods.more » « less
An official website of the United States government
