This content will become publicly available on July 1, 2025
- Award ID(s):
- 2144809
- PAR ID:
- 10536175
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Intelligent Systems
- Volume:
- 6
- Issue:
- 7
- ISSN:
- 2640-4567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)The emergence of soft robots has presented new challenges associated with controlling the underlying fluidics of such systems. Here, we introduce a strategy for additively manufacturing unified soft robots comprising fully integrated fluidic circuitry in a single print run via PolyJet three-dimensional (3D) printing. We explore the efficacy of this approach for soft robots designed to leverage novel 3D fluidic circuit elements—e.g., fluidic diodes, “normally closed” transistors, and “normally open” transistors with geometrically tunable pressure-gain functionalities—to operate in response to fluidic analogs of conventional electronic signals, including constant-flow [“direct current (DC)”], “alternating current (AC)”–inspired, and preprogrammed aperiodic (“variable current”) input conditions. By enabling fully integrated soft robotic entities (composed of soft actuators, fluidic circuitry, and body features) to be rapidly disseminated, modified on demand, and 3D-printed in a single run, the presented design and additive manufacturing strategy offers unique promise to catalyze new classes of soft robots.more » « less
-
Abstract The synthesis of soft matter intelligence with circuit‐driven logic has enabled a new class of robots that perform complex tasks or conform to specialized form factors in unique ways that cannot be realized through conventional designs. Translating this hybrid approach to fluidic systems, the present work addresses the need for sheet‐based circuit materials by leveraging the innate porosity of foam—a soft material—to develop pneumatic components that support digital logic, mixed‐signal control, and analog force sensing in wearables and soft robots. Analytical tools and experimental techniques developed in this work serve to elucidate compressible gas flow through porous sheets, and to inform the design of centimeter‐sized foam resistors with fluidic resistances on the order of 109 Pa s m−3. When embedded inside soft robots and wearables, these resistors facilitate diverse functionalities spanning both sensing and control domains, including digital logic using textile logic gates, digital‐to‐analog signal conversion using ladder networks, and analog sensing of forces up to 40 N via compression‐induced changes in resistance. By combining features of both circuit‐based and materials‐based approaches, foam‐enabled fluidic circuits serve as a useful paradigm for future hybrid robotic architectures that fully embody the sensing and computing capabilities of soft fluidic materials.
-
Textiles hold great promise as a soft yet durable material for building comfortable robotic wearables and assistive devices at low cost. Nevertheless, the development of smart wearables composed entirely of textiles has been hindered by the lack of a viable sheet-based logic architecture that can be implemented using conventional fabric materials and textile manufacturing processes. Here, we develop a fully textile platform for embedding pneumatic digital logic in wearable devices. Our logic-enabled textiles support combinational and sequential logic functions, onboard memory storage, user interaction, and direct interfacing with pneumatic actuators. In addition, they are designed to be lightweight, easily integrable into regular clothing, made using scalable fabrication techniques, and durable enough to withstand everyday use. We demonstrate a textile computer capable of input-driven digital logic for controlling untethered wearable robots that assist users with functional limitations. Our logic platform will facilitate the emergence of future wearables powered by embedded fluidic logic that fully leverage the innate advantages of their textile construction.more » « less
-
The control of pneumatically driven soft robots typically requires electronics. Microcontrollers are connected to power electronics that switch valves and pumps on and off. As a recent alternative, fluidic control methods have been introduced, in which soft digital logic gates permit multiple actuation states to be achieved in soft systems. Such systems have demonstrated autonomous behaviors without the use of electronics. However, fluidic controllers have required complex fabrication processes. To democratize the exploration of fluidic controllers, we developed tube-balloon logic circuitry, which consists of logic gates made from straws and balloons. Each tube-balloon logic device takes a novice five minutes to fabricate and costs $0.45. Tube-balloon logic devices can also operate at pressures of up to 200 kPa and oscillate at frequencies of up to 15 Hz. We configure the tube-balloon logic device as NOT-, NAND-, and NOR-gates and assemble them into a three-ring oscillator to demonstrate a vibrating sieve that separates sugar from rice. Because tube-balloon logic devices are low-cost, easy to fabricate, and their operating principle is simple, they are well suited for exploring fundamental concepts of fluidic control schemes while encouraging design inquiry for pneumatically driven soft robots.more » « less
-
Existing fluidic soft logic gates for controlling soft robots typically depend on labor-intensive manual fabrication or costly printing methods. In our research, we utilize Fused Deposition Modeling to create fully 3D-printed fluidic logic gates, fabricating a valve from thermoplastic polyurethane. We investigate the 3D printing of tubing and introduce a novel extrusion nozzle for tubing production. Our approach significantly reduces the production time for soft fluidic valves from 27 hours using replica molding to 3 hours with FDM printing. We apply our 3D-printed valve to develop optimized XOR gates and D-latch circuits, presenting a rapid and cost- effective fabrication method for fluidic logic gates that aims to make fluidic circuitry more accessible to the soft robotics community.more » « less