skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on September 1, 2025

Title: The Impact of Wettability on the Co-moving Velocity of Two-Fluid Flow in Porous Media
Abstract The impact of wettability on the co-moving velocity of two-fluid flow in porous media is analyzed herein. The co-moving velocity, developed by Roy et al. (Front Phys 8:4, 2022), is a novel representation of the flow behavior of two fluids through porous media. Our study aims to better understand the behavior of the co-moving velocity by analyzing simulation data under various wetting conditions. We analyzed 46 relative permeability curves based on the Lattice–Boltzmann color fluid model and two experimentally determined relative permeability curves. The analysis of the relative permeability data followed the methodology proposed by Roy et al. (Front Phys 8:4, 2022) to reconstruct a constitutive equation for the co-moving velocity. Surprisingly, the coefficients of the constitutive equation were found to be nearly the same for all wetting conditions. On the basis of these results, a simple approach was proposed to reconstruct the relative permeability of the oil phase using only the co-moving velocity relationship and the relative permeability of the water phase. This proposed method provides new information on the interdependence of the relative permeability curves, which has implications for the history matching of production data and the solution of the associated inverse problem. The research findings contribute to a better understanding of the impact of wettability on fluid flow in porous media and provide a practical approach for estimating relative permeability based on the co-moving velocity relationship, which has never been shown before.  more » « less
Award ID(s):
2324787
PAR ID:
10536382
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Transport in Porous Media
Volume:
151
Issue:
10-11
ISSN:
0169-3913
Page Range / eLocation ID:
1967 to 1982
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study aims to bridge length scales in immiscible multiphase flow simulation by connecting two published governing equations at the pore-scale and continuum-scale through a novel validation framework. We employ Niessner and Hassnaizadeh's [“A model for two-phase flow in porous media including fluid-fluid interfacial area,” Water Resour. Res. 44(8), W08439 (2008)] continuum-scale model for multiphase flow in porous media, combined with the geometric equation of state of McClure et al. [“Modeling geometric state for fluids in porous media: Evolution of the Euler characteristic,” Transp. Porous Med. 133(2), 229–250 (2020)]. Pore-scale fluid configurations simulated with the lattice-Boltzmann method are used to validate the continuum-scale results. We propose a mapping from the continuum-scale to pore-scale utilizing a generalized additive model to predict non-wetting phase Euler characteristics during imbibition, effectively bridging the continuum-to-pore length scale gap. Continuum-scale simulated measures of specific interfacial area, saturation, and capillary pressure are directly compared to up-scaled pore-scale simulation results. This research develops a numerical framework capable of capturing multiscale flow equations establishing a connection between pore-scale and continuum-scale simulations. 
    more » « less
  2. Abstract Wettability is one of the critical parameters affecting multiphase flow in porous media. The wettability is determined by the affinity of fluids to the rock surface, which varies due to factors such as mineral heterogeneity, roughness, ageing, and pore-space geometry. It is well known that wettability varies spatially in natural rocks, and it is still generally considered a constant parameter in pore-scale simulation studies. The accuracy of pore-scale simulation of multiphase flow in porous media is undermined by such inadequate wettability models. The advent of in situ visualization techniques, e.g. X-ray imaging and microtomography, enables us to characterize the spatial distribution of wetting more accurately. There are several approaches for such characterization. Most include the construction of a meshed surface of the interface surfaces in a segmented X-ray image and are known to have significant errors arising from insufficient resolution and surface-smoothing algorithms. This work presents a novel approach for spatial determination of wetting properties using local lattice-Boltzmann simulations. The scheme is computationally efficient as the segmented X-ray image is divided into subdomains before conducting the lattice-Boltzmann simulations, enabling fast simulations. To test the proposed method, it was applied to two synthetic cases with known wettability and three datasets of imaged fluid distributions. The wettability map was obtained for all samples using local lattice-Boltzmann calculations on trapped ganglia and optimization on surface affinity parameters. The results were quantitatively compared with a previously developed geometrical contact angle determination method. The two synthetic cases were used to validate the results of the developed workflow, as well as to compare the wettability results with the geometrical analysis method. It is shown that the developed workflow accurately characterizes the wetting state in the synthetic porous media with an acceptable uncertainty and is better to capture extreme wetting conditions. For the three datasets of imaged fluid distributions, our results show that the obtained contact angle distributions are consistent with the geometrical method. However, the obtained contact angle distributions tend to have a narrower span and are considered more realistic compared to the geometrical method. Finally, our results show the potential of the proposed scheme to efficiently obtain wettability maps of porous media using X-ray images of multiphase fluid distributions. The developed workflow can help for more accurate characterization of the wettability map in the porous media using limited experimental data, and hence more accurate digital rock analysis of multiphase flow in porous media. 
    more » « less
  3. null (Ed.)
    Abstract We conduct pore-scale simulations of two-phase flow using the 2D Rothman–Keller colour gradient lattice Boltzmann method to study the effect of wettability on saturation at breakthrough (sweep) when the injected fluid first passes through the right boundary of the model. We performed a suite of 189 simulations in which a “red” fluid is injected at the left side of a 2D porous model that is initially saturated with a “blue” fluid spanning viscosity ratios $$M = \nu _\mathrm{r}/\nu _\mathrm{b} \in [0.001,100]$$ M = ν r / ν b ∈ [ 0.001 , 100 ] and wetting angles $$\theta _\mathrm{w} \in [ 0^\circ ,180^\circ ]$$ θ w ∈ [ 0 ∘ , 180 ∘ ] . As expected, at low-viscosity ratios $$M=\nu _\mathrm{r}/\nu _\mathrm{b} \ll 1$$ M = ν r / ν b ≪ 1 we observe viscous fingering in which narrow tendrils of the red fluid span the model, and for high-viscosity ratios $$M \gg 1$$ M ≫ 1 , we observe stable displacement. The viscous finger morphology is affected by the wetting angle with a tendency for more rounded fingers when the injected fluid is wetting. However, rather than the expected result of increased saturation with increasing wettability, we observe a complex saturation landscape at breakthrough as a function of viscosity ratio and wetting angle that contains hills and valleys with specific wetting angles at given viscosity ratios that maximize sweep. This unexpected result that sweep does not necessarily increase with wettability has major implications to enhanced oil recovery and suggests that the dynamics of multiphase flow in porous media has a complex relationship with the geometry of the medium and the hydrodynamical parameters. 
    more » « less
  4. Abstract The problem of parameter identification appears in many physical applications. A parameter of particular interest in cancer treatment is permeability, which modulates the fluidic streamlines in the tumor microenvironment. Most of the existing permeability identification techniques are invasive and not feasible to identify the permeability with minimal interference with the porous structure in their working conditions. In this paper, a theoretical framework utilizing partial differential equation (PDE)-constrained optimization strategies is established to identify a spatially distributed permeability of a porous structure from its modulated external velocity field measured around the structure. In particular, the flow around and through the porous media are governed by the steady-state Navier–Stokes–Darcy model. The performance of our approach is validated via numerical and experimental tests for the permeability of a 3D printed porous surrogate in a micro-fluidic chip based on the sampled optical velocity measurement. Both numerical and experimental results show a high precision of the permeability estimation. 
    more » « less
  5. Human phonation involves the flow-induced vibrations of the vocal folds (VFs) that result from the interaction with airflow through the larynx. Most voice dysfunctions correspond with the fluid–structure interaction (FSI) features as well as the local changes in perfusion within the VF tissue. This study aims to develop a multiphysics computational framework to simulate the interstitial fluid flow dynamics in vibrating VFs using a biphasic description of the tissue and FSI methodology. The integration of FSI and a permeable VF model presents a novel approach to capture phonation physics' complexity and investigate VF tissue's porous nature. The glottal airflow is modeled by the unsteady, incompressible Navier–Stokes equations, and the Brinkman equation is employed to simulate the flow through the saturated porous medium of the VFs. The computational model provides a prediction of tissue deformation metrics and pulsatile glottal flow, in addition to the interstitial fluid velocity and flow circulation within the porous structure. Furthermore, the model is used to characterize the effects of variation in subglottal lung pressure and VF permeability coefficient by conducting parametric studies. Subsequent investigations to quantify the relationships between these input variables, flow perfusion, pore pressure, and vibration amplitude are presented. A linear relationship is found between the vibration amplitude, pore pressure, and filtration flow with subglottal pressure, whereas a nonlinear dependence between the filtration velocity and VF permeability coefficient is detected. The outcomes highlight the importance of poroelasticity in phonation models. 
    more » « less