skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Benchmarking the placement of hydrosulfide in the Hofmeister series using a bambus[6]uril-based ChemFET sensor
Bambusuril-containing ChemFET sensor membranes show excellent selectivity for HSand inform on its placement in the Hofmeister series.  more » « less
Award ID(s):
2107602
PAR ID:
10536467
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Chemical Science
Volume:
14
Issue:
37
ISSN:
2041-6520
Page Range / eLocation ID:
10273 to 10279
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To study the average contributions of the cusp outflow through the lobes and of the nightside auroral outflow to the O+in the plasma sheet (PS), we performed a statistical study of tailward streaming O+in the lobes, plasma sheet boundary layer|the plasma sheet boundary layer (PSBL) and the PS, using MMS/Hot Plasma Composition Analyzer (HPCA) data from 2017 to 2020. Similar spatial patterns illustrate the entry of cusp‐origin O+from the lobes to the PS through the PSBL. There is an YGSM‐dependent energy pattern for the lobe O+, with low‐energy O+streaming closer to the tail center and high energy (1–3 keV) O+streaming near the flanks. Low energy (1–100 eV) O+from the nightside auroral oval is identified in the near‐Earth PSBL/PS with high‐density (>0.02 cm−3), and energetic (>3 keV) streaming O+with similar density (∼0.013 cm−3) is observed further out on the duskside of the PSBL/PS. The rest of the nightside auroral O+in the PSBL is mixed with O+coming in from the lobe, making it difficult to distinguish the source. We estimated the contributions of the different sources of H+and O+ions through the PS between 7 and 17 RE, using estimates from this work and data extracted from previous studies. We conclude that, during quiet times, the majority of the near‐Earth PS H+are from the cusps, the polar wind and Earthward convection from the distant tail. Similarly, while the O+in the same region has a mixed source, cusp origin outflow provides the highest contribution. 
    more » « less
  2. Abstract The Southern Ocean is a high‐nutrient, low‐chlorophyll (HNLC) region characterized by incomplete nitrate (NO3) consumption by phytoplankton in surface waters. During this incomplete consumption, phytoplankton preferentially assimilate the14N‐ versus the15N‐bearing form of NO3, quantified as the NO3assimilation isotope effect (15ε). Previous summertime estimates of the15ε from HNLC regions range from 4 to 11‰. While culture work has shown that the15ε varies among phytoplankton species, as well as with light and iron stress, we lack a systematic understanding of how and why the15ε varies in the field. Here we estimate the15ε from water‐column profile and surface‐water samples collected in the Indian sector of the Southern Ocean—the first leg of the Antarctic Circumnavigation Expedition (December 2016–January 2017) and the Crossroads transect (April 2016). Consistent with prior work in the mid‐to‐late summer Southern Ocean, we estimate a higher15ε (8.9 ± 0.6‰) for the northern Subantarctic Zone and a lower15ε (5.4 ± 0.9‰) at and south of the Subantarctic Front. We interpret our data in the context of coincident measurements of phytoplankton community composition and estimates of iron and light stress. Similar to prior work, we find a significant, negative relationship between the15ε and the average mixed‐layer photosynthetically active radiation flux of 30–100 μmol m−2 s−1, while above 100 μmol m−2 s−1,15ε increases again. In addition, while we observe no robust relationship of the15ε to iron availability or phytoplankton community, mixed‐layer nitrification over the Kerguelen Plateau appears to strongly influence its magnitude. 
    more » « less
  3. Pakou, A; Souliotis, G; Moustakidis, C (Ed.)
    Nuclear reactions play a crucial role in determining the nucleosynthesis that occurs in astrophysical events. The rates of many reactions that significantly impact certain nucleosynthesis processes can not be currently measured via direct means. These reactions must be constrained in another manner, such as determining the level energies and other structure properties of the compound nuclei. In order to measure level energies of nuclei relevant to nuclear astrophysics, the Enge split-pole spectrograph has been installed and commissioned at the University of Notre Dame’s Nuclear Science Laboratory. The first scientific measurement has also been performed. Structure properties of58Cu were measured via the reaction58Ni(3He,t)58Cu to provide the first experimental constraint of the57Ni(p,γ)58Cu reaction rate, which impacts the production of of44Ti,57Fe, and59Ni in core-collapse supernovae. Preliminary analysis of this measurement confirms the level energies of states in58Cu that could lead to significant resonances in the57Ni(p,γ)58Cu reaction rate, while suggesting the presence of additional states that have not been previously observed but could also lead to significant resonances. 
    more » « less
  4. Abstract Despite its importance in planet formation and biology1, phosphorus has been identified only in the inner 12 kpc of the Galaxy2–19. The study of this element has been hindered in part by unfavourable atomic transitions2,4,20. Phosphorus is thought to be created by neutron capture on29Si and30Si in massive stars20,21, and released into the interstellar medium by Type II supernova explosions2,22. However, models of galactic chemical evolution must arbitrarily increase the supernovae production23to match observed abundances. Here we present the detection of gas-phase phosphorus in the Outer Galaxy through millimetre spectra of PO and PN. Rotational lines of these molecules were observed in the dense cloud WB89-621, located 22.6 kpc from the Galactic Centre24. The abundances of PO and PN in WB89-621 are comparable to values near the Solar System25. Supernovae are not present in the Outer Galaxy26, suggesting another source of phosphorus, such as ‘Galactic Fountains’, where supernova material is redistributed through the halo and circumgalactic medium27. However, fountain-enriched clouds are not found at such large distances. Any extragalactic source, such as the Magellanic Clouds, is unlikely to be metal rich28. Phosphorus instead may be produced by neutron-capture processes in lower mass asymptotic giant branch stars29which are present in the Outer Galaxy. Asymptotic giant branch stars also produce carbon21, flattening the extrapolated metallicity gradient and accounting for the high abundances of C-containing molecules in WB89-621. 
    more » « less
  5. ABSTRACT Characterizing complicated solution phase systems in situ requires advanced modeling techniques to capture the intricate balances between the many chemical species. Due to the error inherent in any scientific measurement, a spectrophotometric titration experiment with nickel(II) and ethylenediamine (en) was repeated six times using an autotitrator to test the replicability of the data and the consistency of the resulting thermodynamic model. All six datasets could be modeled very tightly (R2 > 99.9999%) with the following eight complexes: [Ni]2+, [Ni2en]4+, [Nien]2+, [Ni2en3]4+, [Nien2]2+, [Ni2en5]4+, [Nien3]2+, and [Nien6]2+. The logK values for the stepwise associative reactions agree with existing literature values for the majority species ([Nienn = 1–3]2+) and matched expectations for the minority species; 95% confidence intervals for each logK value were determined via bootstrapping, which quantifies the variability in the binding constant value that is supported by a given dataset. The repeated experiments, which could not be successfully concatenated together, demonstrate that replication is crucial to capturing all the variability in the logK values. Conversely, bootstrapped confidence intervals across multiple experiments can be readily combined to generate an appropriate range for an experimentally determined binding constant. 
    more » « less