skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aligning tutor discourse rigorous thinking with tutee content mastery for predicting math achievements
This work investigates how tutoring discourse interacts with students’ proximal knowledge to explain and predict students’ learning outcomes. Our work is conducted in the context of high-dosage human tutoring where 9th-grade students (N = 1080) attended small group tutorials and individually practiced problems on an Intelligent Tutoring System (ITS). We analyzed whether tutors’ talk moves and students’ performance on the ITS predicted scores on math learning assessments. We trained Random Forest Classifiers (RFCs) to distinguish high and low assessment scores based on tutor talk moves, student’s ITS performance metrics, and their combination. A decision tree was extracted from each RFC to yield an interpretable model. We found AUCs of 0.63 for talk moves, 0.66 for ITS, and 0.77 for their combination, suggesting interactivity among the two feature sources. Specifically, the best decision tree emerged from combining the tutor talk moves that encouraged rigorous thinking and students’ ITS mastery. In essence, tutor talk that encouraged mathematical reasoning predicted achievement for students who demonstrated high mastery on the ITS, whereas tutors’ revoicing of students’ mathematical ideas and contributions was predictive for students with low ITS mastery. Implications for practice are discussed.  more » « less
Award ID(s):
2222647
PAR ID:
10536534
Author(s) / Creator(s):
; ;
Editor(s):
Olney, AM; Chounta, IA; Liu, Z; Santos; OC; Bittencourt, II
Publisher / Repository:
Artificial Intelligence in Education. AIED 2024. Lecture Notes in Computer Science
Date Published:
Volume:
14830
Page Range / eLocation ID:
150-164
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Olney, AM; Chounta, IA; Liu, Z; Santos, OC; Bittencourt, II (Ed.)
    This work investigates how tutoring discourse interacts with students’ proximal knowledge to explain and predict students’ learning outcomes. Our work is conducted in the context of high-dosage human tutoring where 9th-grade students attended small group tutorials and individually practiced problems on an Intelligent Tutoring System (ITS). We analyzed whether tutors’ talk moves and students’ performance on the ITS predicted scores on math learning assessments. We trained Random Forest Classifiers (RFCs) to distinguish high and low assessment scores based on tutor talk moves, student’s ITS performance metrics, and their combination. A decision tree was extracted from each RFC to yield an interpretable model. We found AUCs of 0.63 for talk moves, 0.66 for ITS, and 0.77 for their combination, suggesting interactivity among the two feature sources. Specifically, the best decision tree emerged from combining the tutor talk moves that encouraged rigorous thinking and students’ ITS mastery. In essence, tutor talk that encouraged mathematical reasoning predicted achievement for students who demonstrated high mastery on the ITS, whereas tutors’ revoicing of students’ mathematical ideas and contributions was predictive for students with low ITS mastery. Implications for practice are discussed. 
    more » « less
  2. Olney, A M; Chounta, I A; Liu, Z; Santos, O C; Bittencourt, I I (Ed.)
    This work investigates how tutoring discourse interacts with students’ proximal knowledge to explain and predict students’ learning outcomes. Our work is conducted in the context of high-dosage human tutoring where 9th-grade students attended small group tutorials and individually practiced problems on an Intelligent Tutoring System (ITS). We analyzed whether tutors’ talk moves and students’ performance on the ITS predicted scores on math learning assessments. We trained Random Forest Classifiers (RFCs) to distinguish high and low assessment scores based on tutor talk moves, student’s ITS performance metrics, and their combination. A decision tree was extracted from each RFC to yield an interpretable model. We found AUCs of 0.63 for talk moves, 0.66 for ITS, and 0.77 for their combination, suggesting interactivity among the two feature sources. Specifically, the best decision tree emerged from combining the tutor talk moves that encouraged rigorous thinking and students’ ITS mastery. In essence, tutor talk that encouraged mathematical reasoning predicted achievement for students who demonstrated high mastery on the ITS, whereas tutors’ revoicing of students’ mathematical ideas and contributions was predictive for students with low ITS mastery. Implications for practice are discussed. 
    more » « less
  3. This work investigates relationships between consistent attendance —attendance rates in a group that maintains the same tutor and students across the school year— and learning in small group tutoring sessions. We analyzed data from two large urban districts consisting of 206 9th-grade student groups (3 − 6 students per group) for a total of 803 students and 75 tutors. The students attended small group tutorials approximately every other day during the school year and completed a pre and post-assessment of math skills at the start and end of the year, respectively. First, we found that the attendance rates of the group predicted individual assessment scores better than the individual attendance rates of students comprising that group. Second, we found that groups with high consistent attendance had more frequent and diverse tutor and student talk centering around rich mathematical discussions. Whereas we emphasize that changing tutors or groups might be necessary, our findings suggest that consistently attending tutorial sessions as a group with the same tutor might lead the group to implicitly learn as a team despite not being one. 
    more » « less
  4. In mathematics tutoring, using appropriate instructional discursive strategies, called "talk moves'', is critical to support student learning. Training tutors in the appropriate use of talk moves is a key component of tutor development programs. However, tutor development at scale is a challenge. Recent research has shown that automatic talk moves classification of tutorial discourse can facilitate large-scale delivery of personalized talk moves feedback. In this paper, we build on this work and share our current progress using large language models to classify talk moves in transcripts of tutoring sessions. We report classification results from fine-tuned models, prompt optimization, and supervised embedding vectors classification. The fine-tuned strategy performed best, yielding better performance (.87 macro and .93 weighted f1 score in predicting expert labels) than the current state-of-the-art RoBERTa model. We discuss trade-offs across methods and models. 
    more » « less
  5. Selecting appropriate tutoring help actions that account for both a student’s content mastery and engagement level is essential for effective human tutors, indicating the critical need for these skills in autonomous tutors. In this work, we formulate the robot-student tutoring help action selection problem as the Assistive Tutor partially observable Markov decision process (AT-POMDP). We designed the AT-POMDP and derived its parameters based on data from a prior robot-student tutoring study. The policy that results from solving the ATPOMDP allows a robot tutor to decide upon the optimal tutoring help action to give a student, while maintaining a belief of the student’s mastery of the material and engagement with the task. This approach is validated through a between-subjects field study, which involved 4th grade students (n = 28) interacting with a social robot solving long division problems over five sessions. Students who received help from a robot using the AT-POMDP policy demonstrated significantly greater learning gains than students who received help from a robot with a fixed help action selection policy. Our results demonstrate that this robust computational framework can be used effectively to deliver diverse and personalized tutoring support over time for students. 
    more » « less