A long-standing hypothesis in evolutionary biology is that the evolution of resource specialization can lead to an evolutionary dead end, where specialists have low diversification rates and limited ability to evolve into generalists. In recent years, advances in comparative methods investigating trait-based differences associated with diversification have enabled more robust tests of this idea and have found mixed support. We test the evolutionary dead end hypothesis by estimating net diversification rate differences associated with nest-type specialization among 3224 species of passerine birds. In particular, we test whether the adoption of hole-nesting, a nest-type specialization that decreases predation, results in reduced diversification rates relative to nesting outside of holes. Further, we examine whether evolutionary transitions to the specialist hole-nesting state have been more frequent than transitions out of hole-nesting. Using diversification models that accounted for background rate heterogeneity and different extinction rate scenarios, we found that hole-nesting specialization was not associated with diversification rate differences. Furthermore, contrary to the assumption that specialists rarely evolve into generalists, we found that transitions out of hole-nesting occur more frequently than transitions into hole-nesting. These results suggest that interspecific competition may limit adoption of hole-nesting, but that such competition does not result in limited diversification of hole-nesters. In conjunction with other recent studies using robust comparative methods, our results add to growing evidence that evolutionary dead ends are not a typical outcome of resource specialization. [Cavity nesting; diversification; hidden-state models; passerines; resource specialization.]
more » « less- Award ID(s):
- 2323170
- PAR ID:
- 10536584
- Editor(s):
- Ruane, Sara
- Publisher / Repository:
- Systematic Biology
- Date Published:
- Journal Name:
- Systematic Biology
- Volume:
- 72
- Issue:
- 2
- ISSN:
- 1063-5157
- Page Range / eLocation ID:
- 294 to 306
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Predator specialization has often been considered an evolutionary “dead end” due to the constraints associated with the evolution of morphological and functional optimizations throughout the organism. However, in some predators, these changes are localized in separate structures dedicated to prey capture. One of the most extreme cases of this modularity can be observed in siphonophores, a clade of pelagic colonial cnidarians that use tentilla (tentacle side branches armed with nematocysts) exclusively for prey capture. Here we study how siphonophore specialists and generalists evolve, and what morphological changes are associated with these transitions. To answer these questions, we: a) Measured 29 morphological characters of tentacles from 45 siphonophore species, b) mapped these data to a phylogenetic tree, and c) analyzed the evolutionary associations between morphological characters and prey-type data from the literature. Instead of a dead end, we found that siphonophore specialists can evolve into generalists, and that specialists on one prey type have directly evolved into specialists on other prey types. Our results show that siphonophore tentillum morphology has strong evolutionary associations with prey type, and suggest that shifts between prey types are linked to shifts in the morphology, mode of evolution, and evolutionary correlations of tentilla and their nematocysts. The evolutionary history of siphonophore specialization helps build a broader perspective on predatory niche diversification via morphological innovation and evolution. These findings contribute to understanding how specialization and morphological evolution have shaped present-day food webs.more » « less
-
Habitat specialization underpins biological processes from species distributions to speciation. However, organisms are often described as specialists or generalists based on a single niche axis, despite facing complex, multidimensional environments. Here, we analysed 236 environmental soil microbiomes across the United States and demonstrate that 90% of >1,200 prokaryotes followed one of two trajectories: specialization on all niche axes (multidimensional specialization) or generalization on all axes (multidimensional generalization). We then documented that this pervasive multidimensional specialization/generalization had many ecological and evolutionary consequences. First, multidimensional specialization and generalization are highly conserved with very few transitions between these two trajectories. Second, multidimensional generalists dominated communities because they were 73 times more abundant than specialists. Lastly, multidimensional specialists played important roles in community structure with ~220% more connections in microbiome networks. These results indicate that multidimensional generalization and specialization are evolutionarily stable with multidimensional generalists supporting larger populations and multidimensional specialists playing important roles within communities, probably stemming from their overrepresentation among pollutant detoxifiers and nutrient cyclers. Taken together, we demonstrate that the vast majority of soil prokaryotes are restricted to one of two multidimensional niche trajectories, multidimensional specialization or multidimensional generalization, which then has far-reaching consequences for evolutionary transitions, microbial dominance and community roles.more » « less
-
Intraspecific variation in resource-use traits can have profound ecological and evolutionary implications. Among the most strik- ing examples are resource polymorphisms, where alternative morphs that utilize different resources evolve within a population. An underappreciated aspect of their evolution is that the same conditions that favor resource polymorphism—competition and ecological opportunity—might foster additional rounds of diversification within already existing morphs. We examined these issues in spadefoot toad tadpoles that develop into either a generalist "omnivore" or a specialist "carnivore" morph. Specifically, we assessed the morphological diversity of tadpoles from natural ponds and experimentally induced carnivores reared on al- ternative diets. We also surveyed natural ponds to determine if the strength of intramorph competition and the diversity and abundance of dietary resources (measures of ecological opportunity) influenced the diversity of within-morph variation. We found that five omnivore and four carnivore types were present in natural ponds; alternative diets led to shape differences, some of which mirrored variation in the wild; and both competition and ecological opportunity were associated with enhanced morpho- logical diversity in natural ponds. Such fine-scale intraspecific variation might represent an underappreciated form of biodiversity and might constitute a crucible of evolutionary innovation and diversification.more » « less
-
Abstract Habitat transitions are key potential explanations for why some lineages have diversified and others have not—from Anolis lizards to Darwin's finches. The ecological ramifications of marine-to-freshwater transitions for fishes suggest evolutionary contingency: some lineages maintain their ancestral niches in novel habitats (niche conservatism), whereas others alter their ecological role. However, few studies have considered phenotypic, ecological, and lineage diversification concurrently to explore this issue. Here, we investigated the macroevolutionary history of the taxonomically and ecologically diverse Neotropical freshwater river rays (subfamily Potamotrygoninae), which invaded and diversified in the Amazon and other South American rivers during the late Oligocene to early Miocene. We generated a time-calibrated, multi-gene phylogeny for Potamotrygoninae and reconstructed evolutionary patterns of diet specialization. We measured functional morphological traits relevant for feeding and used comparative phylogenetic methods to examine how feeding morphology diversified over time. Potamotrygonine trophic and phenotypic diversity are evenly partitioned (non-overlapping) among internal clades for most of their history, until 20–16 mya, when more recent diversification suggests increasing overlap among phenotypes. Specialized piscivores (Heliotrygon and Paratrygon) evolved early in the history of freshwater stingrays, while later trophic specialization (molluscivory, insectivory, and crustacivory) evolved in the genus Potamotrygon. Potamotrygonins demonstrate ecological niche lability in diets and feeding apparatus; however, diversification has mostly been a gradual process through time. We suggest that competition is unlikely to have limited the potamotrygonine invasion and diversification in South America.more » « less
-
Abstract Aim The latitudinal diversity gradient of increasing species richness from poles to equator is one of the most striking and pervasive spatial patterns of biodiversity. Climate appears to have been key to the formation of the latitudinal diversity gradient, but the processes through which climate shaped species richness remain unclear. We tested predictions of the time for speciation, carrying capacity and diversification rate latitudinal diversity gradient hypotheses in a trans‐marine/freshwater clade of fishes.
Location Global in marine and freshwater environments.
Taxon Clupeiformes (anchovies, herrings, sardines and relatives).
Methods We tested predictions of latitudinal diversity gradient hypotheses using a molecular phylogeny, species distribution data and phylogenetic comparative approaches. To test the time for speciation hypothesis, we conducted ancestral state reconstructions to infer the ages of temperate, subtropical and tropical lineages and frequency of evolutionary transitions between climates. We tested the carry capacity hypothesis by characterizing changes in net diversification rates through time. To test the diversification rate hypothesis, we qualitatively compared the diversification rates of temperate, subtropical and tropical lineages and conducted statistical tests for associations between latitude and diversification rates.
Results We identified four transitions to temperate climates and two transitions out of temperate climates. We found no differences in diversification rates among temperate and tropical clupeiforms. Net diversification rates remained positive in crown Clupeiformes since their origin ~150 Ma in both tropical and temperate lineages. Climate niche characters exhibited strong phylogenetic signal. All temperate clupeiform lineages arose <50 Ma, after the Early Eocene Climatic Optimum.
Main conclusions Our results support the time for speciation hypothesis, which proposes that climate niche conservatism and fluctuations in the extent of temperate climates limited the time for species to accumulate in temperate climates, resulting in the latitudinal diversity gradient. We found no support for the carrying capacity or diversification rate hypotheses.