skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Effects of Type II Left Censoring in Stable and Chaotic Compartmental Models for Infectious Diseases: Do Small Sample Estimates Survive Censoring?
In this paper, we discuss a selection of tools from dynamical systems and order statistics, which are most often utilized separately, and combine them into an algorithm to estimate the parameters of mathematical models for infectious diseases in the case of small sample sizes and left censoring, which is relevant in the case of rapidly evolving infectious diseases and remote populations. The proposed method relies on the analogy between survival functions and the dynamics of the susceptible compartment in SIR-type models, which are both monotone decreasing in time and are both determined by a dual variable: the hazard function in survival prediction and the number of infected people in SIR-type models. We illustrate the methodology in the case of a continuous model in the presence of noisy measurements with different distributions (Normal, Poisson, Negative Binomial) and in a discrete model, reminiscent of the Ricker map, which admits chaotic dynamics. This estimation procedure shows stable results in experiments based on a popular benchmark dataset for SIR-type models and small samples. This manuscript illustrates how classical theoretical statistical methods and dynamical systems can be merged in interesting ways to study problems ranging from more fundamental small sample situations to more complex infectious disease and survival models, with the potential that this tools can be applied in the presence of a large number of covariates and different types of censored data.  more » « less
Award ID(s):
2152789 2152792
PAR ID:
10536606
Author(s) / Creator(s):
;
Publisher / Repository:
Proceedings of the 2023 AAAI Fall Symposia
Date Published:
Journal Name:
Proceedings of the AAAI Symposium Series
Volume:
2
Issue:
1
ISSN:
2994-4317
Page Range / eLocation ID:
467 to 474
Subject(s) / Keyword(s):
Type II Left Censorin SIR Models Survival Analysis Maximum Likelihood Estimators Chaotic Dynamics Ricker Map
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We propose and analyze a family of epidemiological models that extend the classic Susceptible-Infectious-Recovered/Removed (SIR)-like framework to account for dynamic heterogeneity in infection risk. The family of models takes the form of a system of reaction–diffusion equations given populations structured by heterogeneous susceptibility to infection. These models describe the evolution of population-level macroscopic quantities S ,  I ,  R as in the classical case coupled with a microscopic variable f , giving the distribution of individual behavior in terms of exposure to contagion in the population of susceptibles. The reaction terms represent the impact of sculpting the distribution of susceptibles by the infection process. The diffusion and drift terms that appear in a Fokker–Planck type equation represent the impact of behavior change both during and in the absence of an epidemic. We first study the mathematical foundations of this system of reaction–diffusion equations and prove a number of its properties. In particular, we show that the system will converge back to the unique equilibrium distribution after an epidemic outbreak. We then derive a simpler system by seeking self-similar solutions to the reaction–diffusion equations in the case of Gaussian profiles. Notably, these self-similar solutions lead to a system of ordinary differential equations including classic SIR-like compartments and a new feature: the average risk level in the remaining susceptible population. We show that the simplified system exhibits a rich dynamical structure during epidemics, including plateaus, shoulders, rebounds and oscillations. Finally, we offer perspectives and caveats on ways that this family of models can help interpret the non-canonical dynamics of emerging infectious diseases, including COVID-19. 
    more » « less
  2. This paper presents an integrated computational modelling framework combining pedestrian dynamics and infection spread models, to analyse the infectious disease spread during the different stages of air-travel. While, commercial air travel is central to the global mobility of goods and people, it has also been identified as a leading factor in the spread of several epidemic diseases including influenza, SARS and Ebola. The mixing of susceptible and infectious individuals in these high people density locations like airports involves pedestrian movement which needs to be taken into account in the modeling studies of disease dynamics. We develop a Molecular Dynamics based social force modeling approach for pedestrian dynamics and combine it with a stochastic infection dynamics model to evaluate the spread of viral infectious diseases in airplanes and airports. We apply the multiscale model for various key components of air travel and suggest strategies to reduce the number of contacts and the spread of infectious diseases. We simulate pedestrian movement during boarding and deplaning of some typical commercial airplane models and movement of people through security check areas. We found specific boarding strategies that reduce the number of contacts. Further, we find that smaller airplanes are more effective in reducing the number of contacts compared to larger airplanes. We propose certain queue configuration that reduces contacts between people and mitigate disease spread. 
    more » « less
  3. Some infectious diseases produce lifelong immunity while others only produce temporary immunity. In the case of short-lived immunity, the level of protection wanes over time and may be boosted upon re-exposure, via infection or vaccination. Previous work developed a simple model capturing waning and boosting immunity, known as the Susceptible-Infectious-Recovered-Waned-Susceptible (SIRWS) model, which exhibits rich dynamical behavior including supercritical and subcritical Hopf bifurcations among other structures. Here, we extend the bifurcation analyses of the SIRWS model to examine the influence of all parameters on these bifurcation structures. We show that the bistable region, involving both a stable fixed point and a stable limit cycle, exists only for a small region of biologically realistic parameter space. Furthermore, we contrast the SIRWS model with a modified version, where immune boosting may involve the occurrence of a secondary infection. Analysis of this extended model shows that oscillations and bistability, as found in the SIRWS model, depend on strong assumptions about infectivity and recovery rate from secondary infection. Understanding the dynamics of models of waning and boosting immunity is important for accurately assessing epidemiological data. 
    more » « less
  4. Abstract Sepsis is responsible for the highest economic and mortality burden in critical care settings around the world, prompting the World Health Organization in 2018 to designate it as a global health priority. Despite its high universal prevalence and mortality rate, a disproportionately low amount of sponsored research funding is directed toward diagnosis and treatment of sepsis, when early treatment has been shown to significantly improve survival. Additionally, current technologies and methods are inadequate to provide an accurate and timely diagnosis of septic patients in multiple clinical environments. For improved patient outcomes, a comprehensive immunological evaluation is critical which is comprised of both traditional testing and quantifying recently proposed biomarkers for sepsis. There is an urgent need to develop novel point‐of‐care, low‐cost systems which can accurately stratify patients. These point‐of‐critical‐care sensors should adopt a multiplexed approach utilizing multimodal sensing for heterogenous biomarker detection. For effective multiplexing, the sensors must satisfy criteria including rapid sample to result delivery, low sample volumes for clinical sample sparring, and reduced costs per test. A compendium of currently developed multiplexed micro and nano (M/N)‐based diagnostic technologies for potential applications toward sepsis are presented. We have also explored the various biomarkers targeted for sepsis including immune cell morphology changes, circulating proteins, small molecules, and presence of infectious pathogens. An overview of different M/N detection mechanisms are also provided, along with recent advances in related nanotechnologies which have shown improved patient outcomes and perspectives on what future successful technologies may encompass. This article is categorized under:Diagnostic Tools > Biosensing 
    more » « less
  5. Predicting arbovirus re-emergence remains challenging in regions with limited off-season transmission and intermittent epidemics. Current mathematical models treat the depletion and replenishment of susceptible (non-immune) hosts as the principal drivers of re-emergence, based on established understanding of highly transmissible childhood diseases with frequent epidemics. We extend an analytical approach to determine the number of ‘skip’ years preceding re-emergence for diseases with continuous seasonal transmission, population growth and under-reporting. Re-emergence times are shown to be highly sensitive to small changes in low R 0 (secondary cases produced from a primary infection in a fully susceptible population). We then fit a stochastic Susceptible–Infected–Recovered (SIR) model to observed case data for the emergence of dengue serotype DENV1 in Rio de Janeiro. This aggregated city-level model substantially over-estimates observed re-emergence times either in terms of skips or outbreak probability under forward simulation. The inability of susceptible depletion and replenishment to explain re-emergence under ‘well-mixed’ conditions at a city-wide scale demonstrates a key limitation of SIR aggregated models, including those applied to other arboviruses. The predictive uncertainty and high skip sensitivity to epidemiological parameters suggest a need to investigate the relevant spatial scales of susceptible depletion and the scaling of microscale transmission dynamics to formulate simpler models that apply at coarse resolutions. 
    more » « less