Abstract With the goal of generating anionic analogues to MN2S2⋅Mn(CO)3Br we introduced metallodithiolate ligands, MN2S22−prepared from the Cys‐X‐Cys biomimetic, ema4−ligand (ema=N,N′‐ethylenebis(mercaptoacetamide); M=NiII, [VIV≡O]2+and FeIII) to Mn(CO)5Br. An unexpected, remarkably stable dimanganese product, (H2N2(CH2C=O(μ‐S))2)[Mn(CO)3]2resulted from loss of M originally residing in the N2S24−pocket, replaced by protonation at the amido nitrogens, generating H2ema2−. Accordingly, the ema ligand has switched its coordination mode from an N2S24−cavity holding a single metal, to a binucleating H2ema2−with bridging sulfurs and carboxamide oxygens within Mn‐μ‐S‐CH2‐C‐O, 5‐membered rings. In situ metal‐templating by zinc ions gives quantitative yields of the Mn2product. By computational studies we compared the conformations of “linear” ema4−to ema4−frozen in the “tight‐loop” around single metals, and to the “looser” fold possible for H2ema2−that is the optimal arrangement for binucleation. XRD molecular structures show extensive H‐bonding at the amido‐nitrogen protons in the solid state.
more »
« less
Ala-Cys-Cys-Ala dipeptide dimer alleviates problematic cysteine and cystine levels in media formulations and enhances CHO cell growth and metabolism
- Award ID(s):
- 1624684
- PAR ID:
- 10536866
- Publisher / Repository:
- ELSEVIER
- Date Published:
- Journal Name:
- Metabolic Engineering
- Volume:
- 85
- Issue:
- C
- ISSN:
- 1096-7176
- Page Range / eLocation ID:
- 105 to 115
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Hydrogenase enzymes produce H2gas, which can be a potential source of alternative energy. Inspired by the [NiFe] hydrogenases, we report the construction of a de novo‐designed artificial hydrogenase (ArH). The ArH is a dimeric coiled coil where two cysteine (Cys) residues are introduced at tandema/dpositions of a heptad to create a tetrathiolato Ni binding site. Spectroscopic studies show that Ni binding significantly stabilizes the peptide producing electronic transitions characteristic of Ni‐thiolate proteins. The ArH produces H2photocatalytically, demonstrating a bell‐shaped pH‐dependence on activity. Fluorescence lifetimes and transient absorption spectroscopic studies are undertaken to elucidate the nature of pH‐dependence, and to monitor the reaction kinetics of the photochemical processes. pH titrations are employed to determine the role of protonated Cys on reactivity. Through combining these results, a fine balance is found between solution acidity and the electron transfer steps. This balance is critical to maximize the production of NiI‐peptide and protonation of the NiII−H−intermediate (Ni−R) by a Cys (pKa≈6.4) to produce H2.more » « less
An official website of the United States government

