Prion diseases are infectious neurodegenerative diseases that are capable of cross‐species transmission, thus arousing public health concerns. Seed‐templating propagation of prion protein is believed to underlie prion cross‐species transmission pathology. Understanding the molecular fundamentals of prion propagation is key to unravelling the pathology of prion diseases. In this study, we use coarse‐grained molecular dynamics to investigate the seeding and cross‐seeding aggregation of three prion protein fragments PrP(120–144) originating from human (Hu), bank vole (BV), and Syrian hamster (SHa). We find that the seed accelerates the aggregation of the monomer peptides by eliminating the lag phase. The monomer aggregation kinetics are mainly determined by the structure of the seed. The stronger the hydrophobic residues on the seed associate with each other, the higher the probability that the seed recruits monomer peptides to its surface/interface. For cross‐seeding aggregation, we show that Hu has a strong tendency to adopt the conformation of the BV seed and vice versa; the Hu and BV monomers have a weak tendency to adopt the conformation of the SHa seed. These two findings are consistent with Apostol
This content will become publicly available on January 5, 2025
The Prion protein is the molecular hallmark of the incurable prion diseases affecting mammals, including humans. The protein-only hypothesis states that the misfolding, accumulation, and deposition of the Prion protein play a critical role in toxicity. The cellular Prion protein (PrPC) anchors to the extracellular leaflet of the plasma membrane and prefers cholesterol- and sphingomyelin-rich membrane domains. Conformational Prion protein conversion into the pathological isoform happens on the cell surface.
- Award ID(s):
- 2320718
- PAR ID:
- 10536896
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Bioinformatics
- Volume:
- 3
- ISSN:
- 2673-7647
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract et al .'s experimental findings on PrP(138–143) and partially consistent with Joneset al .'s finding on PrP(23–144). We also identify several conformational mismatches when SHa cross‐seeds BV and Hu peptides, indicating the existence of a cross‐seeding barrier between SHa and the other two sequences. This study sheds light on the molecular mechanism of seed‐templating aggregation of prion protein fragments underlying the sequence‐dependent transmission barrier in prion diseases. -
The pathogenic aggregation of misfolded prion protein (PrP) in axons underlies prion disease pathologies. The molecular mechanisms driving axonal misfolded PrP aggregate formation leading to neurotoxicity are unknown. We found that the small endolysosomal guanosine triphosphatase (GTPase) Arl8b recruits kinesin-1 and Vps41 (HOPS) onto endosomes carrying misfolded mutant PrP to promote their axonal entry and homotypic fusion toward aggregation inside enlarged endomembranes that we call endoggresomes. This axonal rapid endosomal sorting and transport-dependent aggregation (ARESTA) mechanism forms pathologic PrP endoggresomes that impair calcium dynamics and reduce neuronal viability. Inhibiting ARESTA diminishes endoggresome formation, rescues calcium influx, and prevents neuronal death. Our results identify ARESTA as a key pathway for the regulation of endoggresome formation and a new actionable antiaggregation target to ameliorate neuronal dysfunction in the prionopathies.more » « less
-
Abstract The aggregation of the intrinsically disordered tau protein into highly ordered β-sheet-rich fibrils is implicated in the pathogenesis of a range of neurodegenerative disorders. The mechanism of tau fibrillogenesis remains unresolved, particularly early events that trigger the misfolding and assembly of the otherwise soluble and stable tau. We investigated the role the lipid membrane plays in modulating the aggregation of three tau variants, the largest isoform hTau40, the truncated construct K18, and a hyperphosphorylation-mimicking mutant hTau40/3Epi. Despite being charged and soluble, the tau proteins were also highly surface active and favorably interacted with anionic lipid monolayers at the air/water interface. Membrane binding of tau also led to the formation of a macroscopic, gelatinous layer at the air/water interface, possibly related to tau phase separation. At the molecular level, tau assembled into oligomers composed of ~ 40 proteins misfolded in a β-sheet conformation at the membrane surface, as detected by in situ synchrotron grazing-incidence X-ray diffraction. Concomitantly, membrane morphology and lipid packing became disrupted. Our findings support a general tau aggregation mechanism wherein tau’s inherent surface activity and favorable interactions with anionic lipids drive tau-membrane association, inducing misfolding and self-assembly of the disordered tau into β-sheet-rich oligomers that subsequently seed fibrillation and deposition into diseased tissues.
-
Reduction of native prion protein (PrP) levels in the brain is an attractive strategy for the treatment or prevention of human prion disease. Clinical development of any PrP-reducing therapeutic will require an appropriate pharmacodynamic biomarker: a practical and robust method for quantifying PrP, and reliably demonstrating its reduction in the central nervous system (CNS) of a living patient. Here we evaluate the potential of ELISA-based quantification of human PrP in human cerebrospinal fluid (CSF) to serve as a biomarker for PrP-reducing therapeutics. We show that CSF PrP is highly sensitive to plastic adsorption during handling and storage, but its loss can be minimized by the addition of detergent. We find that blood contamination does not affect CSF PrP levels, and that CSF PrP and hemoglobin are uncorrelated, together suggesting that CSF PrP is CNS derived, supporting its relevance for monitoring the tissue of interest and in keeping with high PrP abundance in brain relative to blood. In a cohort with controlled sample handling, CSF PrP exhibits good within-subject test–retest reliability (mean coefficient of variation, 13% in samples collected 8–11 wk apart), a sufficiently stable baseline to allow therapeutically meaningful reductions in brain PrP to be readily detected in CSF. Together, these findings supply a method for monitoring the effect of a PrP-reducing drug in the CNS, and will facilitate development of prion disease therapeutics with this mechanism of action.
-
Protein misfolding is a common intracellular occurrence. Most mutations to coding sequences increase the propensity of the encoded protein to misfold. These misfolded molecules can have devastating effects on cells. Despite the importance of protein misfolding in human disease and protein evolution, there are fundamental questions that remain unanswered, such as, which mutations cause the most misfolding? These questions are difficult to answer partially because we lack high-throughput methods to compare the destabilizing effects of different mutations. Commonly used systems to assess the stability of mutant proteins
in vivo often rely upon essential proteins as sensors, but misfolded proteins can disrupt the function of the essential protein enough to kill the cell. This makes it difficult to identify and compare mutations that cause protein misfolding using these systems. Here, we present a novelin vivo system named Intra-FCY1 that we use to identify mutations that cause misfolding of a model protein [yellow fluorescent protein (YFP)] inSaccharomyces cerevisiae . The Intra-FCY1 system utilizes two complementary fragments of the yeast cytosine deaminase Fcy1, a toxic protein, into which YFP is inserted. When YFP folds, the Fcy1 fragments associate together to reconstitute their function, conferring toxicity in media containing 5-fluorocytosine and hindering growth. But mutations that make YFP misfold abrogate Fcy1 toxicity, thus strains possessing misfolded YFP variants rise to high frequency in growth competition experiments. This makes such strains easier to study. The Intra-FCY1 system cancels localization of the protein of interest, thus can be applied to study the relative stability of mutant versions of diverse cellular proteins. Here, we confirm this method can identify novel mutations that cause misfolding, highlighting the potential for Intra-FCY1 to illuminate the relationship between protein sequence and stability.