skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soil microbial communities along elevational gradients in the Madrean Sky Islands
Abstract The Madrean Sky Islands are mountain ranges isolated by a ‘desert sea’. This area is a biodiversity hotspot currently threatened by climate change. Here, we studied soil microbial communities along elevational gradients in eight Madrean Sky Islands in southeastern Arizona (USA). Our results showed that while elevational microbial richness gradients were weak and not consistent across different mountains, soil properties strongly influenced microbial community composition (overall composition and the abundance of key functional groups) along elevational gradients. In particular, warming is associated with a higher abundance of soil‐borne fungal plant pathogens that concomitantly might facilitate upward elevational shifts of plant species released from negative plant–soil feedbacks. Furthermore, projected warming and drought in the area aggravated by anthropogenic nitrogen deposition on mountain tops (and thus, decreasing nitrogen limitation) can enhance a shift from ectomycorrhizal to arbuscular mycorrhizal fungi. Overall, these results indicate that climate change effects on plant–soil interactions might have profound ecosystem consequences.  more » « less
Award ID(s):
2022055
PAR ID:
10537001
Author(s) / Creator(s):
; ;
Publisher / Repository:
John Wiley & Sons, Inc
Date Published:
Journal Name:
Environmental Microbiology
Volume:
26
Issue:
2
ISSN:
1462-2912
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ants alter soil moisture and nutrient distributions during foraging and nest construction. Here, we investigated how the effects of ants on soil vary with elevation. We compared moisture, carbon, and nitrogen levels in soil samples taken both within nests and nearby the nests (control) of two subterranean ant species. Using a paired design, we sampled 17 sites along elevation gradients in two California mountain ranges (Formica francoeuriin the San Jacinto mountains andFormica sibyllain the Sierra Nevada). We observed an interaction between soil carbon and nitrogen composition and elevation in each mountain range. At lower elevations, nest soil had lower amounts of carbon and nitrogen than control soil, but at higher elevations, nest soil had higher amounts of carbon and nitrogen than control soil. However, our sampling method may only breach the interior of ant nests in some environments. The nest soil moisture did not show any elevational patterns in either mountain range. Ants likely modulate soil properties differently across environmental gradients, but testing this effect must account for variable nest architecture and other climate and landscape differences across diverse habitats. 
    more » « less
  2. ABSTRACT Tundra ecosystems are typically carbon (C) rich but nitrogen (N) limited. Since biological N 2 fixation is the major source of biologically available N, the soil N 2 -fixing (i.e., diazotrophic) community serves as an essential N supplier to the tundra ecosystem. Recent climate warming has induced deeper permafrost thaw and adversely affected C sequestration, which is modulated by N availability. Therefore, it is crucial to examine the responses of diazotrophic communities to warming across the depths of tundra soils. Herein, we carried out one of the deepest sequencing efforts of nitrogenase gene ( nifH ) to investigate how 5 years of experimental winter warming affects Alaskan soil diazotrophic community composition and abundance spanning both the organic and mineral layers. Although soil depth had a stronger influence on diazotrophic community composition than warming, warming significantly ( P <  0.05) enhanced diazotrophic abundance by 86.3% and aboveground plant biomass by 25.2%. Diazotrophic composition in the middle and lower organic layers, detected by nifH sequencing and a microarray-based tool (GeoChip), was markedly altered, with an increase of α-diversity. Changes in diazotrophic abundance and composition significantly correlated with soil moisture, soil thaw duration, and plant biomass, as shown by structural equation modeling analyses. Therefore, more abundant diazotrophic communities induced by warming may potentially serve as an important mechanism for supplementing biologically available N in this tundra ecosystem. IMPORTANCE With the likelihood that changes in global climate will adversely affect the soil C reservoir in the northern circumpolar permafrost zone, an understanding of the potential role of diazotrophic communities in enhancing biological N 2 fixation, which constrains both plant production and microbial decomposition in tundra soils, is important in elucidating the responses of soil microbial communities to global climate change. A recent study showed that the composition of the diazotrophic community in a tundra soil exhibited no change under a short-term (1.5-year) winter warming experiment. However, it remains crucial to examine whether the lack of diazotrophic community responses to warming is persistent over a longer time period as a possibly important mechanism in stabilizing tundra soil C. Through a detailed characterization of the effects of winter warming on diazotrophic communities, we showed that a long-term (5-year) winter warming substantially enhanced diazotrophic abundance and altered community composition, though soil depth had a stronger influence on diazotrophic community composition than warming. These changes were best explained by changes in soil moisture, soil thaw duration, and plant biomass. These results provide crucial insights into the potential factors that may impact future C and N availability in tundra regions. 
    more » « less
  3. Abstract Climate change may alter soil microbial communities and soil organic matter (SOM) composition. Soil carbon (C) cycling takes place over multiple time scales; therefore, long-term studies are essential to better understand the factors influencing C storage and help predict responses to climate change. To investigate this further, soils that were heated by 5 °C above ambient soil temperatures for 18 years were collected from the Barre Woods Soil Warming Study at the Harvard Forest Long-term Ecological Research site. This site consists of large 30 × 30 m plots (control or heated) where entire root systems are exposed to sustained warming conditions. Measurements included soil C and nitrogen concentrations, microbial biomass, and SOM chemistry using gas chromatography–mass spectrometry and solid-state13C nuclear magnetic resonance spectroscopy. These complementary techniques provide a holistic overview of all SOM components and a comprehensive understanding of SOM composition at the molecular-level. Our results showed that soil C concentrations were not significantly altered with warming; however, various molecular-level alterations to SOM chemistry were observed. We found evidence for both enhanced SOM decomposition and increased above-ground plant inputs with long-term warming. We also noted shifts in microbial community composition while microbial biomass remained largely unchanged. These findings suggest that prolonged warming induced increased availability of preferred substrates, leading to shifts in the microbial community and SOM biogeochemistry. The observed increase in gram-positive bacteria indicated changes in substrate availability as gram-positive bacteria are often associated with the decomposition of complex organic matter, while gram-negative bacteria preferentially break down simpler organic compounds altering SOM composition over time. Our results also highlight that additional plant inputs do not effectively offset chronic warming-induced SOM decomposition in temperate forests. 
    more » « less
  4. Abstract Phosphorus (P) limits or co‐limits plant and microbial life in multiple ecosystems, including the arctic tundra. Although current global carbon (C) models focus on the coupling between soil nitrogen (N) and C, ecosystem P response to climate warming may also influence the global C cycle. Permafrost soils may see enhanced or reduced P availability under climate warming through multiple mechanisms including changing litter inputs through plant community change, changing plant–microbial dynamics, altered rates of mineralization of soil organic P through increased microbial activity, and newly exposed mineral‐bound P via deeper thaw. We investigated the effect of long‐term warming on plant leaf, multiple soil and microbial C, N, and P pools, and microbial extracellular enzyme activities, in Alaskan tundra plots underlain by permafrost. Here, we show that 25 yr of experimental summer warming increases community‐level plant leaf P through changing community composition to favour relatively P‐rich plant species. However, despite associated increases in P‐rich litter inputs, we found only a few responses in the belowground pools of P available for plant and microbial uptake, including a weak positive response for citric acid–extractable PO4in the surface soil, a decrease in microbial biomass P, and no change in soil P (or C or N) stocks. This weak, neutral, or negative belowground P response to warming despite enhanced litter P inputs is consistent with a growing number of studies in the arctic tundra that find no long‐term response of soil C and N stocks to warming. 
    more » « less
  5. Nitrogen deposition alters forest ecosystems particularly in high elevation, montane habitats where nitrogen deposition is greatest and continues to increase. We collected soils across an elevational (788–1940 m) gradient, encompassing both abiotic (soil chemistry) and biotic (vegetation community) gradients, at eight locations in the southern Appalachian Mountains of southwestern North Carolina and eastern Tennessee. We measured soil chemistry (total N, C, extractable PO4, soil pH, cation exchange capacity [ECEC], percent base saturation [% BS]) and dissected soil fungal communities using ITS2 metabarcode Illumina MiSeq sequencing. Total soil N, C, PO4, % BS, and pH increased with elevation and plateaued at approximately 1400 m, whereas ECEC linearly increased and C/N decreased with elevation. Fungal communities differed among locations and were correlated with all chemical variables, except PO4, whereas OTU richness increased with total N. Several ecological guilds (i.e., ectomycorrhizae, saprotrophs, plant pathogens) differed in abundance among locations; specifically, saprotroph abundance, primarily attributable to genus Mortierella, was positively correlated with elevation. Ectomycorrhizae declined with total N and soil pH and increased with total C and PO4 where plant pathogens increased with total N and decreased with total C. Our results demonstrate significant turnover in taxonomic and functional fungal groups across elevational gradients which facilitate future predictions on forest ecosystem change in the southern Appalachians as nitrogen deposition rates increase and regional temperature and precipitation regimes shift. 
    more » « less