skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computable error bounds for quasi-Monte Carlo using points with non-negative local discrepancy
Abstract Let $$f:[0,1]^{d}\to{\mathbb{R}}$$ be a completely monotone integrand as defined by Aistleitner and Dick (2015, Acta Arithmetica, 167, 143–171) and let points $$\boldsymbol{x}_{0},\dots ,\boldsymbol{x}_{n-1}\in [0,1]^{d}$$ have a non-negative local discrepancy (NNLD) everywhere in $$[0,1]^{d}$$. We show how to use these properties to get a non-asymptotic and computable upper bound for the integral of $$f$$ over $$[0,1]^{d}$$. An analogous non-positive local discrepancy property provides a computable lower bound. It has been known since Gabai (1967, Illinois J. Math., 11, 1–12) that the two-dimensional Hammersley points in any base $$b\geqslant 2$$ have NNLD. Using the probabilistic notion of associated random variables, we generalize Gabai’s finding to digital nets in any base $$b\geqslant 2$$ and any dimension $$d\geqslant 1$$ when the generator matrices are permutation matrices. We show that permutation matrices cannot attain the best values of the digital net quality parameter when $$d\geqslant 3$$. As a consequence the computable absolutely sure bounds we provide come with less accurate estimates than the usual digital net estimates do in high dimensions. We are also able to construct high-dimensional rank one lattice rules that are NNLD. We show that those lattices do not have good discrepancy properties: any lattice rule with the NNLD property in dimension $$d\geqslant 2$$ either fails to be projection regular or has all its points on the main diagonal. Complete monotonicity is a very strict requirement that for some integrands can be mitigated via a control variate.  more » « less
Award ID(s):
2152780
PAR ID:
10537056
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Information and Inference: A Journal of the IMA
Volume:
13
Issue:
3
ISSN:
2049-8772
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $$d$$ perturbations $$A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$$, $${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$$, with $${\operatorname{Ran}}{\textbf{B}}$$ being cyclic for $$A$$, parametrized by $$d\times d$$ Hermitian matrices $${\boldsymbol{\alpha }}$$, the singular parts of the spectral measures of $$A$$ and $$A_{\boldsymbol{\alpha }}$$ are mutually singular for all $${\boldsymbol{\alpha }}$$ except for a small exceptional set $$E$$. It was shown earlier by the 1st two authors, see [4], that $$E$$ is a subset of measure zero of the space $$\textbf{H}(d)$$ of $$d\times d$$ Hermitian matrices. In this paper, we show that the set $$E$$ has small Hausdorff dimension, $$\dim E \le \dim \textbf{H}(d)-1 = d^2-1$$. 
    more » « less
  2. Abstract Let $$\mathcal {N}(b)$$ be the set of real numbers that are normal to base b . A well-known result of Ki and Linton [19] is that $$\mathcal {N}(b)$$ is $$\boldsymbol {\Pi }^0_3$$ -complete. We show that the set $${\mathcal {N}}^\perp (b)$$ of reals, which preserve $$\mathcal {N}(b)$$ under addition, is also $$\boldsymbol {\Pi }^0_3$$ -complete. We use the characterization of $${\mathcal {N}}^\perp (b),$$ given by Rauzy, in terms of an entropy-like quantity called the noise . It follows from our results that no further characterization theorems could result in a still better bound on the complexity of $${\mathcal {N}}^\perp (b)$$ . We compute the exact descriptive complexity of other naturally occurring sets associated with noise. One of these is complete at the $$\boldsymbol {\Pi }^0_4$$ level. Finally, we get upper and lower bounds on the Hausdorff dimension of the level sets associated with the noise. 
    more » « less
  3. null (Ed.)
    Abstract We show how to construct a $$(1+\varepsilon )$$ ( 1 + ε ) -spanner over a set $${P}$$ P of n points in $${\mathbb {R}}^d$$ R d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters $${\vartheta },\varepsilon \in (0,1)$$ ϑ , ε ∈ ( 0 , 1 ) , the computed spanner $${G}$$ G has $$\begin{aligned} {{\mathcal {O}}}\bigl (\varepsilon ^{-O(d)} {\vartheta }^{-6} n(\log \log n)^6 \log n \bigr ) \end{aligned}$$ O ( ε - O ( d ) ϑ - 6 n ( log log n ) 6 log n ) edges. Furthermore, for any k , and any deleted set $${{B}}\subseteq {P}$$ B ⊆ P of k points, the residual graph $${G}\setminus {{B}}$$ G \ B is a $$(1+\varepsilon )$$ ( 1 + ε ) -spanner for all the points of $${P}$$ P except for $$(1+{\vartheta })k$$ ( 1 + ϑ ) k of them. No previous constructions, beyond the trivial clique with $${{\mathcal {O}}}(n^2)$$ O ( n 2 ) edges, were known with this resilience property (i.e., only a tiny additional fraction of vertices, $$\vartheta |B|$$ ϑ | B | , lose their distance preserving connectivity). Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black-box fashion. 
    more » « less
  4. Let L be a language that can be decided in linear space and let ϵ>0 be any constant. Let A be the exponential hardness assumption that for every n, membership in L for inputs of length n cannot be decided by circuits of size smaller than 2ϵn. We prove that for every function f:{0,1}∗→{0,1}, computable by a randomized logspace algorithm R, there exists a deterministic logspace algorithm D (attempting to compute f), such that on every input x of length n, the algorithm D outputs one of the following:1)The correct value f(x).2)The string: “I am unable to compute f(x) because the hardness assumption A is false”, followed by a (provenly correct) circuit of size smaller than 2ϵn′ for membership in L for inputs of length n′, for some n′=Θ(logn); that is, a circuit that refutes A. Moreover, D is explicitly constructed, given R.We note that previous works on the hardness-versus-randomness paradigm give derandomized algorithms that rely blindly on the hardness assumption. If the hardness assumption is false, the algorithms may output incorrect values, and thus a user cannot trust that an output given by the algorithm is correct. Instead, our algorithm D verifies the computation so that it never outputs an incorrect value. Thus, if D outputs a value for f(x), that value is certified to be correct. Moreover, if D does not output a value for f(x), it alerts that the hardness assumption was found to be false, and refutes the assumption.Our next result is a universal derandomizer for BPL (the class of problems solvable by bounded-error randomized logspace algorithms) 1 : We give a deterministic algorithm U that takes as an input a randomized logspace algorithm R and an input x and simulates the computation of R on x, deteriministically. Under the widely believed assumption BPL=L, the space ... 
    more » « less
  5. The problem of testing monotonicity for Boolean functions on the hypergrid, $$f:[n]^d \to \{0,1\}$$ is a classic topic in property testing. When $n=2$, the domain is the hypercube. For the hypercube case, a breakthrough result of Khot-Minzer-Safra (FOCS 2015) gave a non-adaptive, one-sided tester making $$\otilde(\eps^{-2}\sqrt{d})$$ queries. Up to polylog $$d$$ and $$\eps$$ factors, this bound matches the $$\widetilde{\Omega}(\sqrt{d})$$-query non-adaptive lower bound (Chen-De-Servedio-Tan (STOC 2015), Chen-Waingarten-Xie (STOC 2017)). For any $n > 2$, the optimal non-adaptive complexity was unknown. A previous result of the authors achieves a $$\otilde(d^{5/6})$$-query upper bound (SODA 2020), quite far from the $$\sqrt{d}$$ bound for the hypercube. In this paper, we resolve the non-adaptive complexity of monotonicity testing for all constant $$n$$, up to $$\poly(\eps^{-1}\log d)$$ factors. Specifically, we give a non-adaptive, one-sided monotonicity tester making $$\otilde(\eps^{-2}n\sqrt{d})$$ queries. From a technical standpoint, we prove new directed isoperimetric theorems over the hypergrid $[n]^d$. These results generalize the celebrated directed Talagrand inequalities that were only known for the hypercube. 
    more » « less