skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Morphological Post-Processing Approach for Overlapped Segmentation of Bacterial Cell Images
Scanning electron microscopy (SEM) techniques have been extensively performed to image and study bacterial cells with high-resolution images. Bacterial image segmentation in SEM images is an essential task to distinguish an object of interest and its specific region. These segmentation results can then be used to retrieve quantitative measures (e.g., cell length, area, cell density) for the accurate decision-making process of obtaining cellular objects. However, the complexity of the bacterial segmentation task is a barrier, as the intensity and texture of foreground and background are similar, and also, most clustered bacterial cells in images are partially overlapping with each other. The traditional approaches for identifying cell regions in microscopy images are labor intensive and heavily dependent on the professional knowledge of researchers. To mitigate the aforementioned challenges, in this study, we tested a U-Net-based semantic segmentation architecture followed by a post-processing step of morphological over-segmentation resolution to achieve accurate cell segmentation of SEM-acquired images of bacterial cells grown in a rotary culture system. The approach showed an 89.52% Dice similarity score on bacterial cell segmentation with lower segmentation error rates, validated over several cell overlapping object segmentation approaches with significant performance improvement.  more » « less
Award ID(s):
1920954
PAR ID:
10537340
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Machine Learning and Knowledge Extraction
Volume:
4
Issue:
4
ISSN:
2504-4990
Page Range / eLocation ID:
1024 to 1041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tomaszewski, John E.; Ward, Aaron D. (Ed.)
    Automatic cell quantification in microscopy images can accelerate biomedical research. There has been significant progress in the 3D segmentation of neurons in fluorescence microscopy. However, it remains a challenge in bright-field microscopy due to the low Signal-to-Noise Ratio and signals from out-of-focus neurons. Automatic neuron counting in bright-field z-stacks is often performed on Extended Depth of Field images or on only one thick focal plane image. However, resolving overlapping cells that are located at different z-depths is a challenge. The overlap can be resolved by counting every neuron in its best focus z-plane because of their separation on the z-axis. Unbiased stereology is the state-of-the-art for total cell number estimation. The segmentation boundary for cells is required in order to incorporate the unbiased counting rule for stereology application. Hence, we perform counting via segmentation. We propose to achieve neuron segmentation in the optimal focal plane by posing the binary segmentation task as a multi-class multi-label task. Also, we propose to efficiently use a 2D U-Net for inter-image feature learning in a Multiple Input Multiple Output system that poses a binary segmentation task as a multi-class multi-label segmentation task. We demonstrate the accuracy and efficiency of the MIMO approach using a bright-field microscopy z-stack dataset locally prepared by an expert. The proposed MIMO approach is also validated on a dataset from the Cell Tracking Challenge achieving comparable results to a compared method equipped with memory units. Our z-stack dataset is available at 
    more » « less
  2. The segment anything model (SAM) was released as a foundation model for image segmentation. The promptable segmentation model was trained by over 1 billion masks on 11M licensed and privacy-respecting images. The model supports zero-shot image segmentation with various seg- mentation prompts (e.g., points, boxes, masks). It makes the SAM attractive for medical image analysis, especially for digital pathology where the training data are rare. In this study, we eval- uate the zero-shot segmentation performance of SAM model on representative segmentation tasks on whole slide imaging (WSI), including (1) tumor segmentation, (2) non-tumor tissue segmen- tation, (3) cell nuclei segmentation. Core Results: The results suggest that the zero-shot SAM model achieves remarkable segmentation performance for large connected objects. However, it does not consistently achieve satisfying performance for dense instance object segmentation, even with 20 prompts (clicks/boxes) on each image. We also summarized the identified limitations for digital pathology: (1) image resolution, (2) multiple scales, (3) prompt selection, and (4) model fine-tuning. In the future, the few-shot fine-tuning with images from downstream pathological seg- mentation tasks might help the model to achieve better performance in dense object segmentation. 
    more » « less
  3. Myxococcus xanthus bacteria are a model system for understanding pattern formation and collective cell behaviors. When starving, cells aggregate into fruiting bodies to form metabolically inert spores. During predation, cells self-organize into traveling cell-density waves termed ripples. Both phase-contrast and fluorescence microscopy are used to observe these patterns but each has its limitations. Phase-contrast images have higher contrast, but the resulting image intensities lose their correlation with cell density. The intensities of fluorescence microscopy images, on the other hand, are well-correlated with cell density, enabling better segmentation of aggregates and better visualization of streaming patterns in between aggregates; however, fluorescence microscopy requires the engineering of cells to express fluorescent proteins and can be phototoxic to cells. To combine the advantages of both imaging methodologies, we develop a generative adversarial network that converts phase-contrast into synthesized fluorescent images. By including an additional histogram-equalized output to the state-of-the-art pix2pixHD algorithm, our model generates accurate images of aggregates and streams, enabling the estimation of aggregate positions and sizes, but with small shifts of their boundaries. Further training on ripple patterns enables accurate estimation of the rippling wavelength. Our methods are thus applicable for many other phenotypic behaviors and pattern formation studies. 
    more » « less
  4. The detection and segmentation of stained cells and nuclei are essential prerequisites for subsequent quantitative research for many diseases. Recently, deep learning has shown strong performance in many computer vision problems, including solutions for medical image analysis. Furthermore, accurate stereological quantification of microscopic structures in stained tissue sections plays a critical role in understanding human diseases and developing safe and effective treatments. In this article, we review the most recent deep learning approaches for cell (nuclei) detection and segmentation in cancer and Alzheimer's disease with an emphasis on deep learning approaches combined with unbiased stereology. Major challenges include accurate and reproducible cell detection and segmentation of microscopic images from stained sections. Finally, we discuss potential improvements and future trends in deep learning applied to cell detection and segmentation. 
    more » « less
  5. Chondrocyte viability is a crucial factor in evaluating cartilage health. Most cell viability assays rely on dyes and are not applicable forin vivoor longitudinal studies. We previously demonstrated that two-photon excited autofluorescence and second harmonic generation microscopy provided high-resolution images of cells and collagen structure; those images allowed us to distinguish live from dead chondrocytes by visual assessment or by the normalized autofluorescence ratio. However, both methods require human involvement and have low throughputs. Methods for automated cell-based image processing can improve throughput. Conventional image processing algorithms do not perform well on autofluorescence images acquired by nonlinear microscopes due to low image contrast. In this study, we compared conventional, machine learning, and deep learning methods in chondrocyte segmentation and classification. We demonstrated that deep learning significantly improved the outcome of the chondrocyte segmentation and classification. With appropriate training, the deep learning method can achieve 90% accuracy in chondrocyte viability measurement. The significance of this work is that automated imaging analysis is possible and should not become a major hurdle for the use of nonlinear optical imaging methods in biological or clinical studies. 
    more » « less