The growth and survival of an organism in a particular environment is highly depends on the certain indispensable genes, termed as essential genes. Sulfate-reducing bacteria (SRB) are obligate anaerobes which thrives on sulfate reduction for its energy requirements. The present study used
This content will become publicly available on May 1, 2025
Noncoding RNAs (ncRNAs) play key roles in the regulation of important pathways, including cellular growth, stress management, signaling, and biofilm formation. Sulfate-reducing bacteria (SRB) contribute to huge economic losses causing microbial-induced corrosion through biofilms on metal surfaces. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation. This study aimed to identify ncRNAs in the genome of a model SRB, Oleidesulfovibrio alaskensis G20 (OA G20). Three in silico approaches revealed genome-wide distribution of 37 ncRNAs excluding tRNAs in the OA G20. These ncRNAs belonged to 18 different Rfam families. This study identified riboswitches, sRNAs, RNP, and SRP. The analysis revealed that these ncRNAs could play key roles in the regulation of several pathways of biosynthesis and transport involved in biofilm formation by OA G20. Three sRNAs, Pseudomonas P10, Hammerhead type II, and sX4, which were found in OA G20, are rare and their roles have not been determined in SRB. These results suggest that applying various computational methods could enrich the results and lead to the discovery of additional novel ncRNAs, which could lead to understanding the “rules of life of OA G20” during biofilm formation.
more » « less- Award ID(s):
- 1920954
- PAR ID:
- 10537359
- Publisher / Repository:
- Microorganisms
- Date Published:
- Journal Name:
- Microorganisms
- Volume:
- 12
- Issue:
- 5
- ISSN:
- 2076-2607
- Page Range / eLocation ID:
- 960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Oleidesulfovibrio alaskensis G20 (OA G20) as a model SRB to categorize the essential genes based on their key metabolic pathways. Herein, we reported a feedback loop framework for gene of interest discovery, from bio-problem to gene set of interest, leveraging expert annotation with computational prediction. Defined bio-problem was applied to retrieve the genes of SRB from literature databases (PubMed, and PubMed Central) and annotated them to the genome of OA G20. Retrieved gene list was further used to enrich protein–protein interaction and was corroborated to the pangenome analysis, to categorize the enriched gene sets and the respective pathways under essential and non-essential. Interestingly, thesat gene (dde_2265) from the sulfur metabolism was the bridging gene between all the enriched pathways. Gene clusters involved in essential pathways were linked with the genes from seleno-compound metabolism, amino acid metabolism, secondary metabolite synthesis, and cofactor biosynthesis. Furthermore, pangenome analysis demonstrated the gene distribution, where 69.83% of the 116 enriched genes were mapped under “persistent,” inferring the essentiality of these genes. Likewise, 21.55% of the enriched genes, which involves specially the formate dehydrogenases and metallic hydrogenases, appeared under “shell.” Our methodology suggested that semi-automated text mining and network analysis may play a crucial role in deciphering the previously unexplored genes and key mechanisms which can help to generate a baseline prior to perform any experimental studies. -
Sulfate-reducing bacteria (SRB) are anaerobic bacteria that form biofilm and induce corrosion on various material surfaces. The quorum sensing (QS) system that employs acyl homoserine lactone (AHL)-type QS molecules primarily govern biofilm formation. Studies on SRB have reported the presence of AHL, but no AHL synthase have been annotated in SRB so far. In this computational study, we used a combination of data mining, multiple sequence alignment (MSA), homology modeling and docking to decode a putative AHL synthase in the model SRB, Desulfovibrio vulgaris Hildenborough (DvH). Through data mining, we shortlisted 111 AHL synthase genes. Conserved domain analysis of 111 AHL synthase genes generated a consensus sequence. Subsequent MSA of the consensus sequence with DvH genome indicated that DVU_2486 (previously uncharacterized protein from acetyltransferase family) is the gene encoding for AHL synthase. Homology modeling revealed the existence of seven α-helices and six β sheets in the DvH AHL synthase. The amalgamated study of hydrophobicity, binding energy, and tunnels and cavities revealed that Leu99, Trp104, Arg139, Trp97, and Tyr36 are the crucial amino acids that govern the catalytic center of this putative synthase. Identifying AHL synthase in DvH would provide more comprehensive knowledge on QS mechanism and help design strategies to control biofilm formation.more » « less
-
Small RNAs (sRNAs) are short noncoding RNAs of ~50-200 nucleotides believed to primarily function in regulating crucial activities in bacteria during periods of cellular stress. This study examined the relevance of specific sRNAs on biofilm formation in nutrient starved Salmonella enterica serovar Typhimurium. Eight unique sRNAs were selected for deletion primarily based on their genomic location and/or putative targets. Quantitative and qualitative analyses confirm one of these, sRNA1186573, is required for efficient biofilm formation in S. enterica further highlighting the significance of sRNAs during Salmonella stress response.more » « less
-
Methe, Barbara (Ed.)ABSTRACT Environmental strains of the soil bacterium Bacillus subtilis have valuable applications in agriculture, industry, and biotechnology; however, environmental strains are genetically less accessible. This reduced accessibility is in sharp contrast to laboratory strains, which are well known for their natural competence, and a limitation in their applications. In this study, we observed that robust biofilm formation by environmental strains of B. subtilis greatly reduced the frequency of competent cells in the biofilm. By using model strain 3610, we revealed a cross-pathway regulation that allows biofilm matrix producers and competence-developing cells to undergo mutually exclusive cell differentiation. We further demonstrated that the competence activator ComK represses the key biofilm regulatory gene sinI by directly binding to the sinI promoter, thus blocking competent cells from simultaneously becoming matrix producers. In parallel, the biofilm activator SlrR represses competence through three distinct mechanisms involving both genetic regulation and cell morphological changes. Finally, we discuss the potential implications of limiting competence in a bacterial biofilm. IMPORTANCE The soil bacterium Bacillus subtilis can form robust biofilms, which are important for its survival in the environment. B. subtilis also exhibits natural competence. By investigating competence development in B. subtilis in situ during biofilm formation, we reveal that robust biofilm formation often greatly reduces the frequency of competent cells within the biofilm. We then characterize a cross-pathway regulation that allows cells in these two developmental events to undergo mutually exclusive cell differentiation during biofilm formation. Finally, we discuss potential biological implications of limiting competence in a bacterial biofilm.more » « less
-
Sulfate-reducing bacteria (SRB) have a unique ability to respire under anaerobic conditions using sulfate as a terminal electron acceptor, reducing it to hydrogen sulfide. SRB thrives in many natural environments (freshwater sediments and salty marshes), deep subsurface environments (oil wells and hydrothermal vents), and processing facilities in an industrial setting. Owing to their ability to alter the physicochemical properties of underlying metals, SRB can induce fouling, corrosion, and pipeline clogging challenges. Indigenous SRB causes oil souring and associated product loss and, subsequently, the abandonment of impacted oil wells. The sessile cells in biofilms are 1,000 times more resistant to biocides and induce 100-fold greater corrosion than their planktonic counterparts. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation and corrosion. Here, we examine the critical genes involved in biofilm formation and microbiologically influenced corrosion and categorize them into various functional categories. The current effort also discusses chemical and biological methods for controlling the SRB biofilms. Finally, we highlight the importance of surface engineering approaches for controlling biofilm formation on underlying metal surfaces.more » « less