skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High‐Detectivity UV–Visible–NIR Broadband Polymer Photodetector with Polymer Charge Blocking Layer Cross‐Linked by Organic Photocrosslinker
Abstract Ultraviolet (UV), visible, and near‐infrared (NIR) broadband organic photodetectors are fabricated by sequential solution‐based thin film coatings of a polymer electron blocking layer (EBL) and a polymer photoactive layer. To avoid damage to a preceding polymer EBL during a subsequent solution‐based film coating of a polymer photoactive layer due to lack of solvent orthogonality, 2‐(((4‐azido‐2,3,5,6‐tetrafluorobenzoyl)oxy)methyl)−2‐ethylpropane‐1,3‐diyl bis(4‐azido‐2,3,5,6‐tetrafluorobenzoate) (FPA‐3F) is used as a novel organic cross‐linking agent activated by UV irradiation with a wavelength of 254 nm. Solution‐processed poly[N,N′‐bis(4‐butylphenyl)‐N,N′‐bis(phenyl)‐benzidine] (poly‐TPD) films, which are cross‐linked with a FPA‐3F photocrosslinker, are used for a preceding polymer EBL. A ternary blend film composed of PTB7‐Th, COi8DFIC, and PC71BM is used as a NIR‐sensitive organic photoactive layer with strong photosensitivity in multispectral (UV–visible–NIR) wavelengths of 300–1,050 nm. Poly‐TPD films are successfully cross‐linked even with a very small amount of 1 wt% FPA‐3F. Small amounts of FPA‐3F have little detrimental effect on the electrical and optoelectronic properties of the cross‐linked poly‐TPD EBL. Finally, organic NIR photodetectors with a poly‐TPD EBL cross‐linked by the small addition of FPA‐3F (1 wt%) show the detectivity values higher than 1 × 1012Jones for the entire UV–visible–NIR wavelengths from 300 nm to 1050 nm, and the maximum detectivity values of 1.41 × 1013Jones and 8.90 × 1012Jones at the NIR wavelengths of 900 and 1000 nm, respectively.  more » « less
Award ID(s):
2314294
PAR ID:
10537435
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we demonstrate an ultrasensitive, visible-blind ultraviolet (UV) photodetector based on perovskite–polymer hybrid structure. A novel wide-band-gap vacancy-ordered lead-free inorganic perovskite Cs2SnCl6 with Nd3+ doping is employed in the active layer of this hybrid photodetector. Remarkably, with interfacial charge-controlled hole-injection operating mechanism, our device achieves a maximum detectivity of 6.3 × 1015 Jones at 372 nm, fast photoresponse speed with rise time and fall time in the order of milliseconds, and a large linear dynamic range of 118 dB. The performance is significantly better than most of the existing organic and inorganic semiconductor UV photodetectors reported so far, and its detectivity is close to 1 order of magnitude higher than that of the photomultiplication tube (PMT) in the UV region. In addition, the photodetector demonstrated excellent environmental stability, which is critical for commercial deployment of perovskite-based optoelectronic devices. The results presented in this work open a new route toward development of high-performance optoelectronic devices using perovskite-based hybrid nanomaterial systems. 
    more » « less
  2. Abstract Colloidal quantum dot (CQD) based infrared (IR) photodetectors offer facile wavelength tunability in the IR and low‐cost fabrication. However, owing to their large surface areas, CQDs intrinsically have significant surface traps critically affecting the speed of CQD photodetectors, typically mediated through tedious surface passivation efforts. In this report, an alternative strategy involving coupling of near‐IR photoactive lead sulfide CQDs with a thermally evaporated amorphous selenium (a‐Se) hole transport layer is proposed. By separating the detector into a photon absorbing CQD region and a charge transport a‐Se region, the study takes advantage of the extremely low noise, predominantly hole‐only transport process in a‐Se. A high 3 dB bandwidth of 2.5 MHz and a competitive specific detectivity of 2.5 × 1011Jones at room temperature are demonstrated at 980 nm. This report serves as a first demonstration of strong coupling between an IR active CQD absorber and a‐Se, which paves the path to obtain fast and highly photoresponsive IR photodetection in the future. 
    more » « less
  3. Recently, carbazole-based organic cations have garnered interest for their potential application in two-dimensional (2D) layered hybrid perovskite solar cells because of their strong hole extraction and transport as well as humidity resistance. However, the potential incorporation of carbazole-based Ruddlesden–Popper 2D hybrid perovskites in photodetectors has been largely unexplored. In this study, we synthesized ammonium 1-(9H-carbazol-9-yl) ethanaminium iodide (CzEAI) and fabricated (CzEA)2PbI4 2D perovskite thin films via varying solvent conditions to control film morphology. We constructed photodiode-type photodetectors with the active layer of (CzEA)2PbI4 2D perovskites and demonstrated a specific detectivity of 6.95 × 1010 Jones at 485 nm illumination without external bias. These results demonstrate the potential of carbazole-based 2D perovskites in a wide range of optoelectronic applications. 
    more » « less
  4. Colloidal quantum dots/graphene (QD/Gr) nanohybrids have been studied intensively for photodetection in a broadband spectrum including ultraviolet, visible, near-infrared, and shortwave infrared (UV−vis-NIR-SWIR). Since the optoelectronic process in the QD/Gr nanohybrid relies on the photogenerated charge carrier transfer from QDs to graphene, understanding the role of the QD−QD and QD−Gr interfaces is imperative to the QD/Gr nanohybrid photodetection. Herein, a systematic study is carried out to probe the effect of these interfaces on the noise, photoresponse, and specific detectivity in the UV−vis-NIR-SWIR spectrum. Interestingly, the photoresponse has been found to be negligible without a 3-mercaptopropionic acid (MPA) ligand exchange, moderate with a single ligand exchange after all QD layers are deposited on graphene, and maximum if it is performed after each QD layer deposition up to five layers of total QD thickness of 260−280 nm. Furthermore, exposure of graphene to C-band UV (UVC) for a short period of 4−5 min before QD deposition leads to improved photoresponse via removal of polar molecules at the QD/Gr interface. With the combination of the MPA ligand exchange and UVC exposure, optimal optoelectronic properties can be obtained on the PbS QD/Gr nanohybrids with high specific detectivity up to 2.6 × 1011, 1.5 × 1011, 5 × 1010, and 1.9 × 109 Jones at 400, 550, 1000, and 1700 nm, respectively, making the nanohybrids promising for broadband photodetection. 
    more » « less
  5. Abstract Room‐temperature solution‐processed flexible photodetectors with spectral response from 300 to 2600 nm are reported. Solution‐processed polymeric thin film with transparency ranging from 300 to 7000 nm and superior electrical conductivity as the transparent electrode is reported. Solution‐processed flexible broadband photodetectors with a “vertical” device structure incorporating a perovskite/PbSe quantum dot bilayer thin film based on the above solution‐processed transparent polymeric electrode are demonstrated. The utilization of perovskite/PbSe quantum dot bilayer thin film as the photoactive layer extends spectral response to infrared region and boosts photocurrent densities in both visible and infrared regions through the trap‐assisted photomultiplication effect. Operated at room temperature and under an external bias of ‐1 V, the solution‐processed flexible photodetectors exhibit over 230 mA W‐1responsivity, over 1011 cm Hz1/2/W photodetectivity from 300 to 2600 nm and ≈70 dB linear dynamic ranges. It is also found that the solution‐processed flexible broadband photodetectors exhibit fast response time and excellent flexibility. All these results demonstrate that this work develop a facile approach to realize room‐temperature operated ultrasensitive solution‐processed flexible broadband photodetectors with “vertical” device structure through solution‐processed transparent polymeric electrode. 
    more » « less