skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parametric Multi-Objective Optimization of Cold Plate for Single-Phase Immersion Cooling
Abstract The increasing demand for high-performance computing in applications such as the Internet of Things, Deep Learning, Big data for crypto-mining, virtual reality, healthcare research on genomic sequencing, cancer treatment, etc. have led to the growth of hyperscale data centers. To meet the cooling energy demands of HPC datacenters efficient cooling technologies must be adopted. Traditional air cooling, direct-to-chip liquid cooling, and immersion are some of those methods. Among all, Liquid cooling is superior compared to various air-cooling methods in terms of energy consumption. Direct on-chip cooling using cold plate technology is one such method used in removing heat from high-power electronic components such as CPUs and GPUs in a broader sense. Over the years Thermal Design Power (TDP) is rapidly increasing and will continue to increase in the coming years for not only CPUs and GPUs but also associated electronic components like DRAMs, Platform Control Hub (PCH), and other I/O chipsets on a typical server board. Therefore, unlike air hybrid cooling which uses liquid for cold plates and air as the secondary medium of cooling the associated electronics, we foresee using immersion-based fluids to cool the rest of the electronics in the server. The broader focus of this research is to study the effects of adopting immersion cooling, with integrated cold plates for high-performance systems. Although there are several other factors involved in the study, the focus of this paper will be the optimization of cold plate microchannels for immersion-based fluids in an immersion-cooled environment. Since immersion fluids are dielectric and the fluids used in cold plates are conductive, it exposes us to a major risk of leakage into the tank and short-circuiting the electronics. Therefore, we propose using the immersed fluid to pump into the cold plate. However, it leads to a suspicion of poor thermal performance and associated pumping power due to the difference in viscosity and other fluid properties. To address the thermal and flow performance, the objective is to optimize the cold plate microchannel fin parameters based on thermal and flow performance by evaluating thermal resistance and pressure drop across the cold plate. The detailed CFD model and optimization of the cold plate were done using Ansys Icepak and Ansys OptiSLang respectively.  more » « less
Award ID(s):
2209751
PAR ID:
10537459
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8751-6
Format(s):
Medium: X
Location:
San Diego, California, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In recent years there has been a phenomenal development in cloud computing, networking, virtualization, and storage, which has increased the demand for high performance data centers. The demand for higher CPU (Central Processing Unit) performance and increasing Thermal Design Power (TDP) trends in the industry needs advanced methods of cooling systems that offer high heat transfer capabilities. Maintaining the CPU temperature within the specified limitation with air-cooled servers becomes a challenge after a certain TDP threshold. Among the equipments used in data centers, energy consumption of a cooling system is significantly large and is typically estimated to be over 40% of the total energy consumed. Advancements in Dual In-line Memory Modules (DIMMs) and the CPU compatibility led to overall higher server power consumption. Recent trends show DIMMs consume up to or above 20W each and each CPU can support up to 12 DIMM channels. Therefore, in a data center where high-power dense compute systems are packed together, it demands efficient cooling for the overall server components. In single-phase immersion cooling technology, electronic components or servers are typically submerged in a thermally conductive dielectric fluid allowing it to dissipate heat from all the electronics. The broader focus of this research is to investigate the heat transfer and flow behavior in a 1U air cooled spread core configuration server with heat sinks compared to cold plates attached in series in an immersion environment. Cold plates have extremely low thermal resistance compared to standard air cooled heatsinks. Generally, immersion fluids are dielectric, and fluids used in cold plates are electrically conductive which exposes several problems. In this study, we focus only on understanding the thermal and flow behavior, but it is important to address the challenges associated with it. The coolant used for cold plate is 25% Propylene Glycol water mixture and the fluid used in the tank is a commercially available synthetic dielectric fluid EC-100. A Computational Fluid Dynamics (CFD) model is built in such a way that only the CPUs are cooled using cold plates and the auxiliary electronic components are cooled by the immersion fluid. A baseline CFD model using an air-cooled server with heat sinks is compared to the immersion cold server with cold plates attached to the CPU. The server model has a compact model for cold plate representing thermal resistance and pressure drop. Results of the study discuss the impact on CPU temperatures for various fluid inlet conditions and predict the cooling capability of the integrated cold plate in immersion environment. 
    more » « less
  2. Abstract Data centers are witnessing an unprecedented increase in processing and data storage, resulting in an exponential increase in the servers’ power density and heat generation. Data center operators are looking for green energy efficient cooling technologies with low power consumption and high thermal performance. Typical air-cooled data centers must maintain safe operating temperatures to accommodate cooling for high power consuming server components such as CPUs and GPUs. Thus, making air-cooling inefficient with regards to heat transfer and energy consumption for applications such as high-performance computing, AI, cryptocurrency, and cloud computing, thereby forcing the data centers to switch to liquid cooling. Additionally, air-cooling has a higher OPEX to account for higher server fan power. Liquid Immersion Cooling (LIC) is an affordable and sustainable cooling technology that addresses many of the challenges that come with air cooling technology. LIC is becoming a viable and reliable cooling technology for many high-power demanding applications, leading to reduced maintenance costs, lower water utilization, and lower power consumption. In terms of environmental effect, single-phase immersion cooling outperforms two-phase immersion cooling. There are two types of single-phase immersion cooling methods namely, forced and natural convection. Here, forced convection has a higher overall heat transfer coefficient which makes it advantageous for cooling high-powered electronic devices. Obviously, with natural convection, it is possible to simplify cooling components including elimination of pump. There is, however, some advantages to forced convection and especially low velocity flow where the pumping power is relatively negligible. This study provides a comparison between a baseline forced convection single phase immersion cooled server run for three different inlet temperatures and four different natural convection configurations that utilize different server powers and cold plates. Since the buoyancy effect of the hot fluid is leveraged to generate a natural flow in natural convection, cold plates are designed to remove heat from the server. For performance comparison, a natural convection model with cold plates is designed where water is the flowing fluid in the cold plate. A high-density server is modeled on the Ansys Icepak, with a total server heat load of 3.76 kW. The server is made up of two CPUs and eight GPUs with each chip having its own thermal design power (TDPs). For both heat transfer conditions, the fluid used in the investigation is EC-110, and it is operated at input temperatures of 30°C, 40°C, and 50°C. The coolant flow rate in forced convection is 5 GPM, whereas the flow rate in natural convection cold plates is varied. CFD simulations are used to reduce chip case temperatures through the utilization of both forced and natural convection. Pressure drop and pumping power of operation are also evaluated on the server for the given intake temperature range, and the best-operating parameters are established. The numerical study shows that forced convection systems can maintain much lower component temperatures in comparison to natural convection systems even when the natural convection systems are modeled with enhanced cooling characteristics. 
    more » « less
  3. Abstract Data centers have started to adopt immersion cooling for more than just mainframes and supercomputers. Due to the inability of air cooling to cool down recent high-configured servers with higher Thermal Design Power, current thermal requirements in machine learning, AI, blockchain, 5G, edge computing, and high-frequency trading have resulted in a larger deployment of immersion cooling. Dielectric fluids are far more efficient at transferring heat than air. Immersion cooling promises to help address many of the challenges that come with air cooling systems, especially as computing densities increase. Immersion-cooled data centers are more expandable, quicker installation, more energy-efficient, allows for the cooling of almost all server components, save more money for enterprises, and are more robust overall. By eliminating active cooling components such as fans, immersion cooling enables a significantly higher density of computing capabilities. When utilizing immersion cooling for server hardware that is intended to be air-cooled, immersion-specific optimized heat sinks should be used. A heat sink is an important component for server cooling efficacy. This research conducts an optimization of heatsink for immersion-cooled servers to achieve the minimum case temperature possible utilizing multi-objective and multidesign variable optimization with pumping power as the constraint. A high-density server of 3.76 kW was modeled on Ansys Icepak that consists of 2 CPUs and 8 GPUs with heatsink assemblies at their Thermal Design Power along with 32 Dual In-line Memory Modules. The optimization is conducted for Aluminum heat sinks by minimizing the pressure drop and thermal resistance as the objective functions whereas fin count, fin thickness, and heat sink height are chosen as the design variables in all CPUs, and GPUs heatsink assemblies. Optimization for the CPU and the GPU heatsink was done separately and then the optimized heatsinks were tested in an actual test setup of the server in ANSYS Icepak. The dielectric fluid for this numerical study is EC-110 and the cooling is carried out using forced convection. A Design of Experiment (DOE) is created based on the input range of design variables using a full-factorial approach to generate multiple design points. The effect of the design variables is analyzed on the objective functions to establish the parameters that have a greater impact on the performance of the optimized heatsink. The optimization study is done using Ansys OptiSLang where AMOP (Adaptive Metamodel of Optimal Prognosis) as the sampling method for design exploration. The results show total effect values of heat sinks geometric parameters to choose the best design point with the help of a Response Surface 2D and 3D plot for the individual heat sink assembly. 
    more » « less
  4. More than ever before, data centers must deploy robust thermal solutions to adequately host the high-density and high-performance computing that is in high demand. The newer generation of central processing units (CPUs) and graphics processing units (GPUs) has substantially higher thermal power densities than previous generations. In recent years, more data centers rely on liquid cooling for the high-heat processors inside the servers and air cooling for the remaining low-heat information technology equipment. This hybrid cooling approach creates a smaller and more efficient data center. The deployment of direct-to-chip cold plate liquid cooling is one of the mainstream approaches to providing concentrated cooling to targeted processors. In this study, a processor-level experimental setup was developed to evaluate the cooling performance of a novel computer numerical control (CNC) machined nickel-plated impinging cold plate on a 1 in.  1 in. mock heater that represents a functional processing unit. The pressure drop and thermal resistance performance curves of the electroless nickel-plated cold plate are compared to those of a pure copper cold plate. A temperature uniformity analysis is done using compuational fluid dynamics and compared to the actual test data. Finally, the CNC machined pure copper one is compared to other reported cold plates to demonstrate its superiority of the design with respect to the cooling performance. 
    more » « less
  5. null (Ed.)
    Abstract In today’s world, most data centers have multiple racks with numerous servers in each of them. The high amount of heat dissipation has become the largest server-level cooling problem for the data centers. The higher dissipation required, the higher is the total energy required to run the data center. Although still the most widely used cooling methodology, air cooling has reached its cooling capabilities especially for High-Performance Computing data centers. Liquid-cooled servers have several advantages over their air-cooled counterparts, primarily of which are high thermal mass, lower maintenance. Nano-fluids have been used in the past for improving the thermal efficiency of traditional dielectric coolants in the power electronics and automotive industry. Nanofluids have shown great promise in improving the convective heat transfer properties of the coolants due to a proven increase in thermal conductivity and specific heat capacity. The present research investigates the thermal enhancement of the performance of de-ionized water-based dielectric coolant with Copper nanoparticles for a higher heat transfer from the server cold plates. Detailed 3-D modeling of a commercial cold plate is completed and the CFD analysis is done in a commercially available CFD code ANSYS CFX. The obtained results compare the improvement in heat transfer due to improvement in coolant properties with data available in the literature. 
    more » « less