Data Probes as Boundary Objects for Technology Policy Design: Demystifying Technology for Policymakers and Aligning Stakeholder Objectives in Rideshare Gig Work
                        
                    More Like this
- 
            Abstract This review article highlights recent advances in designing biomaterials to be interfaced with food and plants, with the goal of enhancing the resilience of the AgroFood infrastructure by boosting crop production, mitigating environmental impact, and reducing losses along the supply chain. Special attention is given to innovations in biomaterial‐based approaches and platforms for 1) seed enhancement through encapsulation, preservation, and controlled release of payloads (e.g., plant growth‐promoting microbes) to the seeds and their rhizosphere; 2) precision delivery of multi‐scale payloads to targeted plant tissues, organelles, and vasculature; 3) edible food coatings that regulate gas exchanges and provide antimicrobial properties to extend the shelf life of perishable food; and 4) food spoilage detection based on different sensor/reporter systems. Within each domain, biomaterials design principles, emerging micro‐/nanofabrication strategies, and the advantages and disadvantages of different delivery/preservation/sensing platforms are introduced and critically discussed. Views of future requirements, aims, and trends are also given based on the opportunities and challenges of applying biomaterials in the AgroFood system.more » « less
- 
            Technological innovation is a dynamic process that spans the lifecycle of an idea, from scientific research to production. Within this process, there are few key innovations that significantly impact a technology’s development, and the ability to identify and trace the development of these key innovations comes with a great payoff for researchers and technology managers. In this paper, we present a framework for identifying the technology’s main evolutionary pathway of a technology. What is unique about this framework is that we introduce new indicators that reflect the connectivity and the modularity in the interior citation network to distinguish between the stages of a technology’s development. We also show how information about a family of patents can be used to build a comprehensive patent citation network. Last, we apply integrated approaches of main path analysis (MPA) -- namely global main path analysis and global key-route main analysis -- for extracting technological trajectories at different technological stages. We illustrate this approach with Dye-Sensitized Solar Cells (DSSCs), a low-cost solar cell belonging to the group of thin film solar cells, contributing to the remarkable growth in the renewable energy industry. The results show how this approach can trace the main development trajectory of a research field and distinguish key technologies to help decision-makers manage the technological stages of their innovation processes more effectively.more » « less
- 
            [This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] There is a growing need in the United States for a workforce trained in quantum information science and technology (QIST), a disciplinary topic that is rarely addressed in precollege science, mathematics, and computer science curricula. University quantum physics and physics education researchers designed and initiated a 4-week, 12-h QIST professional development workshop for preservice and in-service secondary school science, mathematics, and computer science educators. A STEM integration framework guided the workshop structure, which incorporated a situated cognition model for learning quantum concepts and computing, identifying recent advances in quantum technologies, planning curricula, and differentiating among QIST subfields including quantum communication, quantum computation, quantum simulation, and quantum metrology and sensing. The pre-/post-research design employed a newly developed teacher attitude survey, Exploratory factor analysis identified three latent constructs in teachers’ self-efficacy, including (i) knowledge about QIST academic pathways and careers; (ii) QIST pedagogical fluency and STEM integration; and (iii) facilitating QIST learning. Parametric comparisons of means indicated that teacher participants showed significant gains overall and in all latent constructs with medium to large effect sizes ( ). This professional learning model shows promise in strengthening teachers’ self-confidence in pedagogical content knowledge of quantum ideas so they may facilitate student engagement in quantum information science, a field that involves conceptual change and is often considered abstract, counterintuitive, inaccessible, and suitable only for the academically elite. Implications for policy and practice are discussed. Published by the American Physical Society2024more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    