Calcite is known to incorporate a range of non-constituent ions during its precipitation from aqueous solutions. Their concentrations (measured as E/Ca ratios, where E denotes the elemental forms of non-constituent ions) in calcite formed in seawater can serve as useful tools for paleoceanographic studies. But this requires concrete understanding of the incorporation patterns and their dependence to environmental factors at the time of mineral precipitation. Here, we present Na/Ca, K/Ca, S/Ca, and B/Ca ratios of inorganic calcite samples generated in laboratory experiments using Mg-free artificial seawater with systematic manipulations of pH, [DIC], and [Ca2+]. The three parameters were varied both individually (the pH, DIC, and Ca experimental series) and in tandem (the pH-Ca and DIC-Ca series) to form calcites under variable versus near-constant precipitation rates (denoted as R). All measured E/Ca ratios showed a robust positive linear dependence to changes in [Ca2+] in the Ca, pH-Ca, and DIC-Ca series, irrespective of changes in R. While K/Ca and S/Ca ratios changed almost exclusively with [Ca2+], Na/Ca and B/Ca ratios showed an additionally strong increase with increasing pH and a more moderate increase with rising [DIC], when R changed accordingly in the pH and DIC series. While R-driven kinetic effects and/or formation of certain cation–anion pairs may be important for the elemental uptake in calcite under some circumstances, these mechanisms or processes cannot fully account for the observed trends in every experimental series for all E/Ca ratios considered here. We propose that the observed E/Ca trends can be comprehensively explained by simultaneously considering the nonequivalent influence of changes in solution [Ca2+] and [CO32−] on step-specific kink formation dynamics and the size difference between the respective non-constituent ions (K+, Na+, SO42−, and B(OH)4− and B(OH)3) relative to Ca2+ and CO32− that constitute the calcite lattice. 
                        more » 
                        « less   
                    
                            
                            Constraining sulfur incorporation in calcite using inorganic precipitation experiments
                        
                    
    
            The sulfur over calcium ratio (S/Ca) in foraminiferal shells was recently proposed as a new and independent proxy for reconstructing marine inorganic carbon chemistry. This new approach assumes that sulfur is incorporated into CaCO3 predominantly in the form of sulfate (SO42−) through lattice substitution for carbonate ions (CO32–), and that S/Ca thus reflects seawater [CO32–]. Although foraminiferal growth experiments validated this approach, field studies showed controversial results suggesting that the potential impact of [CO32–] may be overwritten by one or more parameters. Hence, to better understand the inorganic processes involved, we here investigate S/Ca values in inorganically precipitated CaCO3 (S/Ca(cc)) grown in solutions of CaCl2 − Na2CO3 − Na2SO4 − B(OH)3 − MgCl2. Experimental results indicate the dependence of sulfate partitioning in CaCO3 on the carbon chemistry via changing pH and suggest that faster precipitation rates increase the partition coefficient for sulfur. The S/Ca ratios of our inorganic calcite samples show positive correlation with modelled [CaSO40](aq), but not with the concentration of free SO42− ions. This challenges the traditional model for sulfate incorporation in calcite and implies that the uptake of sulfate potentially occurs via ion-ion pairs rather than being incorporated as single anions. Based on the [Ca2+] dependence via speciation, we here suggest a critical evaluation of this potential proxy. As sulfate complexation seems to control sulfate uptake in inorganic calcite, application as a proxy using foraminiferal calcite may be limited to periods for which seawater chemistry is well-constrained. As foraminiferal calcite growth is modulated by inward Ca2+ flow to the site of calcification coupled to outward H+ pumping, sulfate incorporation as CaSO40 ion-pair in the foraminifer’s shell also provides a mechanistic link for the observed relationship between S/Ca(cc) and [CO32–]. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10537614
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Geochimica et Cosmochimica Acta
- Volume:
- 381
- Issue:
- C
- ISSN:
- 0016-7037
- Page Range / eLocation ID:
- 116 to 130
- Subject(s) / Keyword(s):
- Calcite growth experiment Sulfate incorporation Ion-pair formation Inorganic carbon chemistry Proxy
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Stable lithium isotopes (δ7Li) of CaCO3 minerals have increasingly been used as a tracer for changes in silicate weathering processes. However, there is limited understanding of the influence of physical and chemical conditions on δ7Li values of CaCO3 minerals during their formation in aqueous solutions. Here, we examined Li isotope fractionation in inorganic calcite and aragonite precipitation experiments with systematic manipulations of solution pH and concentrations of total dissolved inorganic carbon species ([DIC] ≈ [HCO3−] + [CO32−]) and calcium ion (Ca2+). Calcite and aragonite samples had δ7Li values lower than those of dissolved Li in solutions by about 3‰ and 16‰, respectively, indicating preferential uptake of the lighter 6Li isotopes. Aragonite consistently had δ7Li values lower than those of calcite by ∼13‰, likely due to differences in Li coordination and thereby the strength of bonds formed by/with Li within the respective mineral structure. We observed no statistically significant changes in aragonite nor calcite δ7Li values in response to changing solution pH, [DIC], [Ca2+], and CaCO3 precipitation rates, indicating our solution chemistry manipulations imposed little effect on Li isotope fractionation. These findings lead us to argue that the observed Li isotope fractionations in calcite and aragonite with respect to dissolved Li in solutions are dominated by equilibrium isotope effects, and that kinetic effects for δ7Li values in CaCO3 are either non-existent or too small to be expressed under our experimental conditions.more » « less
- 
            Abstract. A portion of Alaska's Fairbanks North Star Borough was designated as nonattainment for the 2006 24 h fine particulate matter 2.5 µm or less in diameter (PM2.5) National Ambient Air Quality Standards (NAAQS) in 2009. PM2.5 NAAQS exceedances in Fairbanks mainly occur during dark and cold winters, when temperature inversions form and trap high emissions at the surface. Sulfate (SO42-), often the second-largest contributor to PM2.5 mass during these wintertime PM episodes, is underpredicted by atmospheric chemical transport models (CTMs). Most CTMs account for primary SO42- and secondary SO42- formed via gas-phase oxidation of sulfur dioxide (SO2) and in-cloud aqueous oxidation of dissolved S(IV). Dissolution and reaction of SO2 in aqueous aerosols are generally not included in CTMs but can be represented as heterogeneous reactive uptake and may help better represent the high SO42- concentrations observed during Fairbanks winters. In addition, hydroxymethanesulfonate (HMS), a particulate sulfur species sometimes misidentified as SO42-, is known to form during Fairbanks winters. Heterogeneous formation of SO42- and HMS in aerosol liquid water (ALW) was implemented in the Community Multiscale Air Quality (CMAQ) modeling system. CMAQ simulations were performed for wintertime PM episodes in Fairbanks (2008) as well as over the Northern Hemisphere and Contiguous United States (CONUS) for 2015–2016. The added heterogeneous sulfur chemistry reduced model mean sulfate bias by ∼ 0.6 µg m−3 during a cold winter PM episode in Fairbanks, AK. Improvements in model performance are also seen in Beijing during wintertime haze events (reducing model mean sulfate bias by ∼ 2.9 µg S m−3). This additional sulfur chemistry also improves modeled summertime SO42- bias in the southeastern US, with implications for future modeling of biogenic organosulfates.more » « less
- 
            Planktic foraminifera test iodine to calcium ratios represent an emerging proxy method to assess subsurface seawater oxygenation states. Several core-top studies show lower planktic foraminifera I/Ca in locations with oxygen depleted subsurface waters compared to well oxygenated environments. The reasoning behind this trend is that only the oxidized species of iodine, iodate, is incorporated in foraminiferal calcite. The I/Ca of foraminiferal calcite is thought to reflect iodate contents in seawater. To test this hypothesis, we compare planktic foraminifera I/Ca ratios, obtained from plankton tows, with published and new seawater iodate concentrations from 1) the Eastern North Pacific with extensive oxygen depletion, 2) the Benguela Current System with moderately depleted oxygen concentrations, and 3) the well oxygenated North and South Atlantic. We find the lowest I/Ca ratios (0.07 µmol/mol) in planktic foraminifera retrieved from the Eastern North Pacific, and higher values for samples (up to 0.72 µmol/mol) obtained from the Benguela Current System and North and South Atlantic. The I/Ca ratios of plankton tow foraminifera from environments with well oxygenated subsurface waters, however, are an order of magnitude lower compared to core-tops from similarly well-oxygenated regions. This would suggest that planktic foraminifera gain iodine post-mortem, either when sinking through the water column, or during burial.more » « less
- 
            Abstract. Salinity is one of the most common water quality threats in riverbasins and irrigated regions worldwide. However, no available numericalmodels simulate all major processes affecting salt ion fate and transport at the watershed scale. This study presents a new salinity module for the SWAT model that simulates the fate and transport of eight major salt ions(SO42-, Ca2+, Mg2+, Na+, K+, Cl−,CO32-, HCO3-) in a watershed system. The module accountsfor salt transport in surface runoff, soil percolation, lateral flow,groundwater, and streams, and equilibrium chemistry reactions in soil layersand the aquifer. The module consists of several new subroutines that areimbedded within the SWAT modelling code and one input file containing soilsalinity and aquifer salinity data for the watershed. The model is appliedto a 732 km2 salinity-impaired irrigated region within the ArkansasRiver Valley in southeastern Colorado and tested against root zone soilsalinity, groundwater salt ion concentration, groundwater salt loadings tothe river network, and in-stream salt ion concentration. The model can be auseful tool in simulating baseline salinity transport and investigatingsalinity best management practices in watersheds of varying spatial scales.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    