skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Under pressure: How do science teachers use capital to achieve agency during turbulent times?
Abstract Disruptions to education systems (e.g., the COVID‐19 pandemic) evoke a range of responses from teachers. Teachers are required to learn new skills, attend to students' social emotional needs, modify their instructional approaches, and discover innovative ways to engage their students in science, technology, and engineering courses, all while managing their own professional and personal needs. Although teachers of all disciplines adjust their instructional and curricular approaches in response to disruptions, the impetus for this study was to explore the unique challenges of science teachers during the COVID‐19 pandemic that affected their sense of agency (sense of control). To understand how science teachers acquired, used, and invested in capital (i.e., available resources with the potential to meet identified challenges) to achieve professional agency, we studied 113 science teachers in 2020−2021 when they experienced disruptions associated with the pandemic. An analysis of open‐ended responses from 60 teachers indicates that teachers who achieved agency shared four attributes. They (i) demonstrated an awareness of needed capital, (ii) acquired capital, (iii) used capital, and (iv) dedicated effort toward capital‐building for future use. Our findings inform science teacher educators and schools that are committed to mitigating science teacher attrition by understanding how teachers respond to personal and professional stresses.  more » « less
Award ID(s):
1950290
PAR ID:
10537690
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Science Education
Volume:
108
Issue:
3
ISSN:
0036-8326
Page Range / eLocation ID:
680 to 700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As the pandemic began to disrupt school systems in March 2020, teachers were expected to quickly modify their instructional approaches. We recruited science, technology, engineering, and mathematics teachers who were recipients of National Science Foundation scholarships based on their high‐quality academic record and commitment to working in high‐needs school districts to participate in a longitudinal survey study. Participants (n = 153) graduated from universities or colleges in the Mountain West or western region of the Midwest. Through a series of three surveys administered throughout 2020 to all participants and follow‐up focus group interviews with a subset (n = 42) in early 2021, we examined participants' perceptions and beliefs about the educational system's response to COVID‐19. Participants perceived that the continuation of instructional delivery was the highest priority and that their professional needs were the lowest priority. Most participants believed the actions taken by school districts and schools to be negative or neutral. Participants were categorized by years of experience (preservice 0, novice 1–3, early career 4–5, and master 6+) to compare their perceptions of success and intentions to continue teaching. Participants perceived that their level of success increased with years of professional experience prior to the pandemic, but all participants reported feeling less successful during the pandemic. Despite participants' negative beliefs about the school response and perceived low levels of success, they intended to remain in the classroom short‐term but not necessarily long term. We recommend that teacher educators and administrators (1) help teachers develop their personal knowledge and skills for use in the classroom, especially considering the national shortage of science (and STEM, broadly) teachers in high‐needs districts and (2) develop proactive plans for responding to unexpected crises on large scales, as well as those limited to a particular region. 
    more » « less
  2. Abstract This paper is part of the special issue on Teacher Learning and Practice within Organizational Contexts. Shifting instructional practices in elementary schools to include more equitable, reform‐based pedagogies is imperative for supporting students’ development as science learners. Teachers need high quality professional development (PD) to learn such practices, but research shows considerable variability in the extent to which teachers implement instructional practices learned during PD. Individual teacher characteristics such as self‐efficacy may influence teacher learning during PD, but only account for part of the variability. The organizational conditions of teachers’ schools and districts may also play a key role in teachers’ implementation of new instructional practices. However, because systematic research in this area in science education is still nascent, it is difficult for districts and PD providers to address organizational barriers to professional learning. To meet this need, we conducted an explanatory mixed‐methods study using surveys (N = 54) and interviews (N = 19) of elementary teachers engaged in equity‐focused, reform‐based science PD, testing the degree to which a conceptually framed set of organizational conditions predicted teacher equity self‐efficacy and instructional practice alignment. Out of the 11 organizational conditions, only teacher professional impact and their sense of autonomy in their instructional practice explained variance in the outcomes. Qualitative findings showed these relationships to be iterative and recursive, rather than linear. Our findings underscore the essential role of teacher professionalism and sense of agency over commonly cited organizational conditions such as materials and labs in supporting teachers to implement more equitable science instructional practices during PD. 
    more » « less
  3. The COVID-19 pandemic resulted in dramatic changes to the experiences of school for young people around the world as youth and adults navigated changes to instructional format and means of engaging in teaching and learning. School connectedness during the pandemic served a potentially protective role for adolescents during this uncertain time. In this study, we investigate students’ ( n = 64) experiences of connectedness with their teachers and peers and examine how students’ perceptions of belonging relate to their science self-efficacy. We draw on mixed-methods with students at two middle schools using dramatically different instructional approaches. These multiple data sources provide insight into the importance of building and sustaining relationships and connectedness for students’ self-efficacy, specifically during the COVID-19 pandemic and beyond. Connectedness to one’s science teacher was the strongest predictor of science self-efficacy, and qualitative data describe how connectedness was fostered even when typical approaches were unavailable. 
    more » « less
  4. Abstract This special edition is based on the revelation that “the lessons learned and unlearned during COVID-19 grant us an unparalleled opportunity to reflect.” Here, we reflect on lessons learned related to teacher adaptiveness. We examined how the COVID-19 pandemic demonstrated the adaptiveness necessary for teachers to knowledge generation approaches aligned with the Next Generation Science Standards. First, we outline a three-year professional development program focused on knowledge generation approaches. We present findings from teachers’ experiences teaching science from 2019 to 2021, collected through consecutive form explanatory mixed-methods analysis involving written responses to vignettes (n = 474) and classroom observations (n = 58). Then, using an individual teacher case study, we explore how the shift to virtual teaching was supported by adaptiveness. Results suggest a significant relationship between teacher adaptiveness and the use of knowledge generation approaches. We conclude with implications for elementary science teacher professional development and present questions for further research on adaptiveness. 
    more » « less
  5. We explored the COVID-19 pandemic as a context for learning about the role of science in a global health crisis. In spring 2020, at the beginning of the first pandemic-related lockdown, we worked with a high school teacher to design and implement a unit on human brain and behavior science. The unit guided her 17 students in creating studies that explored personally relevant questions about the pandemic to contribute to a citizen science platform. Pre-/postsurveys, student artifacts, and student and teacher interviews showed increases in students’ fascination with science—a driver of engagement and career preference—and sense of agency as citizen scientists. Students approached science as a tool for addressing their pandemic-related concerns but were hampered by the challenges of remote schooling. These findings highlight both the opportunities of learning from a global crisis, and the need to consider how that crisis is still affecting learners. 
    more » « less