skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the Effect of Specimen Size on Elastic Properties of Fused-Filament-Fabrication-Printed Polycarbonate and Thermoplastic Polyurethane
Additive manufacturing (AM) is often used to create designs inspired by topology optimization and biological structures, yielding unique cross-sectional geometries spanning across scales. However, manufacturing defects intrinsic to AM can affect material properties, limiting the applicability of a uniform material model across diverse cross-sections. To examine this phenomenon, this paper explores the influence of specimen size and layer height on the compressive modulus of polycarbonate (PC) and thermoplastic polyurethane (TPU) specimens fabricated using fused filament fabrication (FFF). Micro-computed tomography imaging and compression testing were conducted on the printed samples. The results indicate that while variations in the modulus were statistically significant due to both layer height and size of the specimen in TPU, variations in PC were only statistically significant due to layer height. The highest elastic modulus was observed at a 0.2 mm layer height for both materials across different sizes. These findings offer valuable insights into design components for FFF, emphasizing the importance of considering mechanical property variations due to feature size, especially in TPU. Furthermore, locations with a higher probability of failure are recommended to be printed closer to the print bed, especially for TPU, because of the lower void volume fraction observed near the heated print bed.  more » « less
Award ID(s):
1926353
PAR ID:
10537697
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Materials
Volume:
17
Issue:
11
ISSN:
1996-1944
Page Range / eLocation ID:
2677
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Print conditions for thermoplastics by filament-based material extrusion (MatEx) are commonly optimized to maximize the elastic modulus. However, these optimizations tend to ignore the impact of thermal history that depends on the specimen size and print path selection. Here, we investigate the effect of size print path (raster angle and build orientation) and print sequence on the mechanical properties of polycarbonate (PC) and polypropylene (PP). Examination of parallel and series printing of flat (XY) and stand-on (YZ) orientation of Type V specimens demonstrated that to observe statistical differences in the mechanical response that the interlayer time between printed roads should be approximately 5 s or less. The print time for a single layer in XY orientation is much longer than that for a single layer in YZ orientation, so print sequence only impacts the mechanical response in the YZ orientation. However, the specimen size and raster angle did influence the mechanical properties in XY orientation due to the differences in thermal history associated with intralayer time between adjacent roads. Moreover, all of these effects are significantly larger when printing PC than PP. These differences between PP and PC are mostly attributed to the mechanism of interface consolidation (crystallization vs. glass formation), which changes the requirements for a strong interface between roads (crystals vs. entanglements). These results illustrate how the print times dictated by the print path layout impact observed mechanical properties. This work also demonstrated that the options available in some standards developed for traditional manufacturing will change the quantitative results when applied to 3D printed parts. 
    more » « less
  2. Additive manufacturing promises to revolutionize manufacturing industries. However, 3D printing of novel build materials is currently limited by constraints inherent to printer designs. In this work, a bench-top powder melt extrusion (PME) 3D printer head was designed and fabricated to print parts directly from powder-based materials rather than filament. The final design of the PME printer head evolved from the Rich Rap Universal Pellet Extruder (RRUPE) design and was realized through an iterative approach. The PME printer was made possible by modifications to the funnel shape, pressure applied to the extrudate by the auger, and hot end structure. Through comparison of parts printed with the PME printer with those from a commercially available fused filament fabrication (FFF) 3D printer using common thermoplastics poly(lactide) (PLA), high impact poly(styrene) (HIPS), and acrylonitrile butadiene styrene (ABS) powders (< 1 mm in diameter), evaluation of the printer performance was performed. For each build material, the PME printed objects show comparable viscoelastic properties by dynamic mechanical analysis (DMA) to those of the FFF objects. However, due to a significant difference in printer resolution between PME (X–Y resolution of 0.8 mm and a Z-layer height calibrated to 0.1 mm) and FFF (X–Y resolution of 0.4 mm and a Z-layer height of 0.18 mm), as well as, an inherently more inconsistent feed of build material for PME than FFF, the resulting print quality, determined by a dimensional analysis and surface roughness comparisons, of the PME printed objects was lower than that of the FFF printed parts based on the print layer uniformity and structure. Further, due to the poorer print resolution and inherent inconsistent build material feed of the PME, the bulk tensile strength and Young’s moduli of the objects printed by PME were lower and more inconsistent (49.2 ± 10.7 MPa and 1620 ± 375 MPa, respectively) than those of FFF printed objects (57.7 ± 2.31 MPa and 2160 ± 179 MPa, respectively). Nevertheless, PME print methods promise an opportunity to provide a platform on which it is possible to rapidly prototype a myriad of thermoplastic materials for 3D printing. 
    more » « less
  3. Understanding the mechanical properties of three-dimensional (3D)-printed ceramics while keeping the parts intact is crucial for advancing their application in high-performance and biocompatible fields, such as biomedical and aerospace engineering. This study uses non-destructive nanoindentation techniques to investigate the mechanical performance of 3D-printed zirconia across pre-conditioned and sintered states. Vat photopolymerization-based additive manufacturing (AM) was employed to fabricate zirconia samples. The structural and mechanical properties of the printed zirconia samples were explored, focusing on hardness and elastic modulus variations influenced by printing orientation and post-processing conditions. Nanoindentation data, analyzed using the Oliver and Pharr method, provided insights into the elastic and plastic responses of the material, showing the highest hardness and elastic modulus in the 0° print orientation. The microstructural analysis, conducted via scanning electron microscopy (SEM), illustrated notable changes in grain size and porosity, emphasizing the influencing of the printing orientation and thermal treatment on material properties. This research uniquely investigates zirconia’s mechanical evolution at the nanoscale across different processing stages—pre-conditioned and sintered—using nanoindentation. Unlike prior studies, which have focused on bulk mechanical properties post-sintering, this work elucidates how nano-mechanical behavior develops throughout additive manufacturing, bridging critical knowledge gaps in material performance optimization. 
    more » « less
  4. Abstract Fused deposition modeling (FMD) is considered one of the most common additive manufacturing methods for creating prototypes and small functional parts. Many researchers have studied Polylactic acid (PLA), Polycarbonate (PC), and Acrylonitrile butadiene styrene (ABS) as a material for fused deposition modeling printing. Among them, Polylactic Acid (PLA) is considered one of the most popular thermoplastic materials due to its low cost and biodegradable properties. In this study, silk PLA material was used. In Fused deposition modeling (FMD), the selection of printing parameters plays a pivotal role in determining the overall quality and integrity of the 3D-printed products. These parameters significantly influence the quality and strength of 3-D printed products. This study investigates the mechanical properties of silk-PLA printed specimens under different printing conditions, such as layer thickness, nozzle temperature, and print speed. All the tensile specimens were tested using ASTM D638 to characterize Young’s modulus and ultimate tensile strength. The thickness of the layers of tensile specimens was set to 0.1 mm, 0.15 mm, and 0.2 mm. The temperatures of the nozzle used during printing varied from 200°C, 210°C, and 220°C, whereas print speeds of 100 mm/s, 120 mm/s, and 140 mm/s were considered. The other printing parameters were kept consistent for all specimens. The result indicates tensile strength generally increases with increasing temperature of the nozzle, up to 220°C; however, a decline was observed in the average Young’s modulus value when the thickness of the layer increased from 0.10 mm to 0.20 mm. According to the results of the ANOVA analysis, the interaction between layer thickness, nozzle temperature, and printing speed significantly affects the tensile strength and Young’s modulus of Silk-PLA. This study reveals that nozzle temperature is the most critical parameter regarding the ultimate tensile strength and Young’s modulus, providing crucial insights for optimizing 3D printing parameters. 
    more » « less
  5. Commercially available fused deposition modeling (FDM) printers have yet to bridge the gap between printing soft, flexible materials and printing hard, rigid materials. This work presents a custom printer solution, based on open-source hardware and software, which allows a user to print both flexible and rigid polymer materials. The materials printed include NinjaFlex, SemiFlex, acrylonitrile-butadiene-styrene (ABS), Nylon, and Polycarbonate. In order to print rigid materials, a custom, high-temperature heated bed was designed to act as a print stage. Additionally, high temperature extruders were included in the design to accommodate the printing requirements of both flexible and rigid filaments. Across 25 equally spaced points on the print plate, the maximum temperature difference between any two points on the heated bed was found to be ∼9°C for a target temperature of 170°C. With a uniform temperature profile across the plate, functional prints were achieved in each material. The print quality varied, dependent on material; however, the standard deviation of layer thicknesses and size measurements of the parts were comparable to those produced on a Zortrax M200 printer. After calibration and further process development, the custom printer will be integrated into the NEXUS system — a multiscale additive manufacturing instrument with integrated 3D printing and robotic assembly (NSF Award #1828355). 
    more » « less