Abstract Grasslands dominate the terrestrial landscape, and grasses have evolved complex and elegant strategies to overcome abiotic stresses. The C4 grasses are particularly stress tolerant and thrive in tropical and dry temperate ecosystems. Growing evidence suggests that the presence of C4 photosynthesis alone is insufficient to account for drought resilience in grasses, pointing to other adaptations as contributing to tolerance traits. The majority of grasses from the Chloridoideae subfamily are tolerant to drought, salt, and desiccation, making this subfamily a hub of resilience. Here, we discuss the evolutionary innovations that make C4 grasses so resilient, with a particular emphasis on grasses from the Chloridoideae (chloridoid) and Panicoideae (panicoid) subfamilies. We propose that a baseline level of resilience in chloridoid ancestors allowed them to colonize harsh habitats, and these environments drove selective pressure that enabled the repeated evolution of abiotic stress tolerance traits. Furthermore, we suggest that a lack of evolutionary access to stressful environments is partially responsible for the relatively poor stress resilience of major C4 crops compared to their wild relatives. We propose that chloridoid crops and the subfamily more broadly represent an untapped reservoir for improving resilience to drought and other abiotic stresses in cereals.
more »
« less
Schizachyrium scoparium (C4) better tolerates drought than Andropogon gerardii (C4) via constant CO2 supply for photosynthesis during water stress
Abstract Abstract. Climate change is dramatically altering global precipitation patterns across terrestrial ecosystems, making it critically important that we understand both how and why plant species vary in their drought sensitivities. Andropogon gerardii and Schizachyrium scoparium, both C4 grasses, provide a model system for understanding the physiological mechanisms that determine how species of a single functional type can differ in drought responses, an issue remains a critical gap in our ability to model and predict the impacts of drought on grassland ecosystems. Despite its greater lability of foliar water content, previous experiments have demonstrated that S. scoparium maintains higher photosynthetic capacity during droughts. It is therefore likely that the ability of S. scoparium to withstand drought instead derives from a greater metabolic resistance to drought. Here, we tested the following hypotheses: (H1) A. gerardii is more vulnerable to drought than S. scoparium at both the population and organismal levels, (H2) A. gerardii is less stomatally flexible than S. scoparium, and (H3) A. gerardii is more metabolically limited than S. scoparium. Our results indicate that it is actually stomatal limitations of CO2 supply that limit A. gerardii photosynthesis during drought. Schizachyrium scoparium was more drought-resistant than A. gerardii based on long-term field data, organismal biomass production and physiological gas exchange measurements. While both S. scoparium and A. gerardii avoided metabolic limitation of photosynthesis, CO2 supply of A. gerardii was greatly reduced during late-stage drought stress. That two common, co-occurring C4 species possess such different responses to drought highlights the physiological variability inherent within plant functional groups and underscores the need for more studies of C4 drought tolerance.
more »
« less
- Award ID(s):
- 1941390
- PAR ID:
- 10537749
- Editor(s):
- Sonawane, Balasaheb
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- AoB PLANTS
- Volume:
- 16
- Issue:
- 2
- ISSN:
- 2041-2851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hui, Dafeng (Ed.)Abstract While the relationship between genetic diversity and plant productivity has been established for many species, it is unclear whether environmental conditions and biotic associations alter the nature of the relationship. To address this, we investigated the interactive effects of genotypic diversity, drought and mycorrhizal association on plant productivity and plant traits. Our mesocosm study was set up at the Konza Prairie Biological Research Station, located in the south of Manhattan, Kansas. Andropogon gerardii, the focal species for our study, was planted in two levels of genotypic richness treatment: monoculture or three-genotype polyculture. A rainout shelter was constructed over half of the experimental area to impose a drought and Thiophanate-methyl fungicide was used to suppress arbuscular mycorrhizal fungi in selected pots within each genotypic richness and drought treatment. Genotypic richness and mycorrhizal association did not affect above-ground biomass of A. gerardii. Drought differentially affected the above-ground biomass, the number of flowers and bolts of A. gerardii genotypes, and the biomass and the functional traits also differed for monoculture versus polyculture. Our results suggest that drought and genotypic richness can have variable outcomes for different genotypes of a plant species.more » « less
-
ABSTRACT Plant functional traits are vital tools in ecological restoration and biodiversity conservation. While functional traits and functional diversity are increasingly being used to inform restoration efforts, challenges remain in the characterization of trait variation in many systems, including within‐species. Likewise, understanding axes of trait variation describing trade‐offs in plant function is important for trait‐based restoration frameworks, yet the degree of coordination between above‐ground functional traits and their below‐ ground counterparts is often unknown. Here, we investigate intraspecific trait variation among five populations ofSchizachyrium scoparium(little bluestem), a species commonly used for restoration, from different habitat types across a gradient from southern Wisconsin to Northern Illinois. We asked (1) how regional populations ofS. scopariumdiffer in their functional traits, (2) how functional trait variation inS. scopariumis structured among and within populations, and (3) how above‐ and below‐ground functional traits ofS. scopariumcoordinate and describe axes of functional trade‐offs. We found that populations differed in multivariate trait space, but evidence for differences in individual traits among populations was mixed. Trait relationships with habitat types were idiosyncratic and often misaligned with expectations of plant economic spectra. Variation within populations was as high, or higher, than between populations across traits. We found evidence for weak coordination in several trait pairs, including two above‐ and below‐ground trait combinations, while others appeared to be uncoordinated. Our findings support previous research that trait differentiation can occur at multiple scales, both between and within populations. Extensive within‐population trait variability could be leveraged in trait‐based restoration frameworks targeting intraspecific functional diversity. The lack of strong signals of coordination between above‐ and below‐ground functional traits suggest that sourcing decisions meant to match below‐ground functional traits to recipient restored communities should rely on direct measurement of root traits associated with desired functions rather than above‐ground proxies.more » « less
-
null (Ed.)Globally, most human caloric intake is from crops that belong to the grass family (Poaceae), including sugarcane (Saccharum spp.), rice (Oryza sativa), maize (or corn, Zea mays), and wheat (Triticum aestivum). The grasses have a unique morphology and inflorescence architecture, and some have also evolved an uncommon photosynthesis pathway that confers drought and heat tolerance, the C4 pathway. Most secondary-level students are unaware of the global value of these crops and are unfamiliar with plant science fundamentals such as grass architecture and the genetic concepts of genotype and phenotype. Green foxtail millet (Setaria viridis) is a model organism for C4 plants and a close relative of globally important grasses, including sugarcane. It is ideal for teaching about grass morphology, the economic value of grasses, and the C4 photosynthetic pathway. This article details a teaching module that uses S. viridis to engage entire classrooms of students in authentic research through a laboratory investigation of grass morphology, growth cycle, and genetics. This module includes protocols and assignments to guide students through the process of growing one generation of S. viridis mutants and reference wild-type plants from seed to seed, taking measurements, making critical observations of mutant phenotypes, and discussing their physiological implications.more » « less
-
Abstract Plant survival depends on a balance between carbon supply and demand. When carbon supply becomes limited, plants buffer demand by using stored carbohydrates (sugar and starch). During drought, NSCs (non-structural carbohydrates) may accumulate if growth stops before photosynthesis. This expectation is pervasive, yet few studies have combined simultaneous measurements of drought, photosynthesis, growth, and carbon storage to test this. Using a field experiment with mature trees in a semi-arid woodland, we show that growth and photosynthesis slow in parallel as$${\psi }_{{pd}}$$ declines, preventing carbon storage in two species of conifer (J. monospermaandP. edulis). During experimental drought, growth and photosynthesis were frequently co-limited. Our results point to an alternative perspective on how plants use carbon that views growth and photosynthesis as independent processes both regulated by water availability.more » « less
An official website of the United States government

