Abstract. A global compilation of in situ data is useful to evaluate thequality of ocean-colour satellite data records. Here we describe the datacompiled for the validation of the ocean-colour products from the ESA OceanColour Climate Change Initiative (OC-CCI). The data were acquired fromseveral sources (including, inter alia, MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD,MERMAID, AMT, ICES, HOT and GeP&CO) and span the period from 1997 to 2018.Observations of the following variables were compiled: spectralremote-sensing reflectances, concentrations of chlorophyll a, spectralinherent optical properties, spectral diffuse attenuation coefficients andtotal suspended matter. The data were from multi-project archives acquiredvia open internet services or from individual projects, acquired directlyfrom data providers. Methodologies were implemented for homogenization,quality control and merging of all data. No changes were made to theoriginal data, other than averaging of observations that were close in timeand space, elimination of some points after quality control and conversionto a standard format. The final result is a merged table designed forvalidation of satellite-derived ocean-colour products and available in textformat. Metadata of each in situ measurement (original source, cruise orexperiment, principal investigator) was propagated throughout the work andmade available in the final table. By making the metadata available,provenance is better documented, and it is also possible to analyse each setof data separately. This paper also describes the changes that were made tothe compilation in relation to the previous version (Valente et al., 2016).The compiled data are available athttps://doi.org/10.1594/PANGAEA.898188 (Valente et al., 2019).
more »
« less
A synthesis of hydroclimatic, ecological, and socioeconomic data for transdisciplinary research in the Mekong
Various climate, hydro-meteorological, ecological, and socio-economic datasets are synthesized and made available for the Mekong River Basin. The sources of each dataset are also mentioned in the associated readme file. Dam attribute data, inundation data, and Cambodia census data can be made available upon request to the authors.
more »
« less
- PAR ID:
- 10537840
- Publisher / Repository:
- Zenodo
- Date Published:
- Subject(s) / Keyword(s):
- Mekong River basin, data synthesis, climate change, transdisciplinary research, sustainable development, hydrology, meteorology, sediment, groundwater, nutrients, land use
- Format(s):
- Medium: X
- Location:
- Michigan
- Right(s):
- Creative Commons Attribution 4.0 International; Open Access
- Institution:
- Michigan State University
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The LIGO Scientific Collaboration and the Virgo Collaboration have cataloged eleven confidently detected gravitational-wave events during the first two observing runs of the advanced detector era. All eleven events were consistent with being from well-modeled mergers between compact stellar-mass objects: black holes or neutron stars. The data around the time of each of these events have been made publicly available through the gravitational-wave open science center. The entirety of the gravitational-wave strain data from the first and second observing runs have also now been made publicly available. There is considerable interest among the broad scientific community in understanding the data and methods used in the analyses. In this paper, we provide an overview of the detector noise properties and the data analysis techniques used to detect gravitational-wave signals and infer the source properties. We describe some of the checks that are performed to validate the analyses and results from the observations of gravitational-wave events. We also address concerns that have been raised about various properties of LIGO–Virgo detector noise and the correctness of our analyses as applied to the resulting data.more » « less
-
The data set shared herein is related to the test results of a set aeroelastic experiments, carried out in the wind tunnel of SOH Wind Engineering LLC. in Williston, VT (USA). The dynamic wind response of an aeroelastic super-tall building model with external guy wire support (bracing) was examined. The wind tunnel data are made available to the research community.more » « less
-
Location-based social networks (LBSNs) have been studied extensively in recent years. However, utilizing real-world LBSN data sets yields several weaknesses: sparse and small data sets, privacy concerns, and a lack of authoritative ground-truth. To overcome these weaknesses, we leverage a large-scale LBSN simulation to create a framework to simulate human behavior and to create synthetic but realistic LBSN data based on human patterns of life. Such data not only captures the location of users over time but also their interactions via social networks. Patterns of life are simulated by giving agents (i.e., people) an array of “needs” that they aim to satisfy, e.g., agents go home when they are tired, to restaurants when they are hungry, to work to cover their financial needs, and to recreational sites to meet friends and satisfy their social needs. While existing real-world LBSN data sets are trivially small, the proposed framework provides a source for massive LBSN benchmark data that closely mimics the real-world. As such, it allows us to capture 100% of the (simulated) population without any data uncertainty, privacy-related concerns, or incompleteness. It allows researchers to see the (simulated) world through the lens of an omniscient entity having perfect data. Our framework is made available to the community. In addition, we provide a series of simulated benchmark LBSN data sets using different synthetic towns and real-world urban environments obtained from OpenStreetMap. The simulation software and data sets, which comprise gigabytes of spatio-temporal and temporal social network data, are made available to the research community.more » « less
-
This paper presents the design, development, and application of a sensor suite, made with the explicit purpose of localizing and mapping in underwater environments. The design objectives of such an underwater sensor rig include simplicity of carrying, ease of operation in different modes, and data collection. The rig is equipped with stereo camera, inertial measurement unit (IMU), mechanical scanning sonar, and depth sensor. The electronics are enclosed in a water-proof PVC tube tested to sixty meters. The contribution of this paper is twofold: first, we open-source the design providing detailed instructions that are made available online; second, we discuss lessons learned as well as some successful applications where the presented sensor suite has been operated by divers.more » « less