skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of Cryopreservation Conditions on the Performance of NISTCHO Cells
The NISTCHO cell line is a recombinant Chinese hamster ovary cell line engineered to produce cNISTmAb, a monoclonal antibody that recognizes the fusion F glycoprotein on the surface of respiratory syncytial virus (RSV). These cells are invaluable as a standard reference material for developers of therapeutic monoclonal antibodies and serve as an educational resource in biomanufacturing training programs. This study investigates the performance of NISTCHO cells following cryopreservation at temperatures of -80°C and -150°C. Initial cell viability, maximum cell density in culture, and monoclonal antibody production were compared for cells cryopreserved for up to 30 weeks. Cells were thawed and cultured at two-week intervals to monitor their growth behavior, peak cell densities, and antibody production levels. Analysis of cell behavior in culture revealed no significant differences in cell growth or cell production between cells stored at -80°C and those stored at -150°C. These findings affirm that NISTCHO cells can be preserved at -80°C for up to 30 weeks without any adverse effects on their growth or monoclonal antibody production capabilities, an important finding for training and education programs that rely on -80° C freezers to store cell banks.  more » « less
Award ID(s):
2055036
PAR ID:
10537888
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Zenodo
Date Published:
Journal Name:
Journal of advanced technological education
Volume:
3
Issue:
2
ISSN:
2832-9627
Subject(s) / Keyword(s):
NISTCHO monoclonal antibody biomanufacturing cryopreservation
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. NISTCHO is a recombinant Chinese hamster ovary cell line that has been genetically engineered to produce the monoclonal antibody cNISTmAb. This study investigates the stability of the NISTCHO cell line in long-term culture. Low passage number NISTCHO cells from a working cell bank were used to initiate a shake flask culture that was passaged over many weeks, accounting for approximately 129 cell doublings. Cells taken at two-week intervals during this period were used to inoculate fresh cultures, which were monitored over nine days for viable cell concentration, percent viability, and monoclonal antibody production. Results demonstrate consistency among growth curves over time with comparable peak cell densities and cell viabilities. Importantly, cNISTmAb production remained high, with culture titers remaining stable over the culture period and a high number of cell doublings. These findings demonstrate that the NISTCHO cell line has high stability and a sustained capability of producing cNISTmAb over extended culture periods. 
    more » « less
  2. Abstract The biomanufacturing industry is advancing toward continuous processes that will involve longer culture durations and older cell ages. These upstream trends may bring unforeseen challenges for downstream purification due to fluctuations in host cell protein (HCP) levels. To understand the extent of HCP expression instability exhibited by Chinese hamster ovary (CHO) cells over these time scales, an industry‐wide consortium collaborated to develop a study to characterize age‐dependent changes in HCP levels across 30, 60, and 90 cell doublings, representing a period of approximately 60 days. A monoclonal antibody (mAb)‐producing cell line with bulk productivity up to 3 g/L in a bioreactor was aged in parallel with its parental CHO‐K1 host. Subsequently, both cell types at each age were cultivated in an automated bioreactor system to generate harvested cell culture fluid (HCCF) for HCP analysis. More than 1500 HCPs were quantified using complementary proteomic techniques, two‐dimensional electrophoresis (2DE) and liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS). While up to 13% of proteins showed variable expression with age, more changes were observed when comparing between the two cell lines with up to 47% of HCPs differentially expressed. A small subset (50 HCPs) with age‐dependent expression were previously reported to be problematic as high‐risk and/or difficult‐to‐remove impurities; however, the vast majority of these were downregulated with age. Our findings suggest that HCP expression changes over this time scale may not be as dramatic and pose as great of a challenge to downstream processing as originally expected but that monitoring of variably expressed problematic HCPs remains critical. 
    more » « less
  3. AbstractThe pharmaceutical industry employs various strategies to improve cell productivity. These strategies include process intensification, culture media improvement, clonal selection, media supplementation and genetic engineering of cells. However, improved cell productivity has inherent risk of impacting product quality attributes (PQA). PQAs may affect the products’ efficacy via stability, bioavailability, or in vivo bioactivity. Variations in manufacturing process may introduce heterogeneity in the products by altering the type and extent of N-glycosylation, which is a PQA of therapeutic proteins. We investigated the effect of different cell densities representing increasing process intensification in a perfusion cell culture on the production of an IgG1-κ monoclonal antibody from a CHO-K1 cell line. This antibody is glycosylated both on light chain and heavy chain. Our results showed that the contents of glycosylation of IgG1-κ mAb increased in G0F and fucosylated type glycans as a group, whereas sialylated type glycans decreased, for the mAb whole protein. Overall, significant differences were observed in amounts of G0F, G1F, G0, G2FS1, and G2FS2 type glycans across all process intensification levels. G2FS2 and G2 type N-glycans were predominantly quantifiable from light chain rather than heavy chain. It may be concluded that there is a potential impact to product quality attributes of therapeutic proteins during process intensification via perfusion cell culture that needs to be assessed. Since during perfusion cell culture the product is collected throughout the duration of the process, lot allocation needs careful attention to process parameters, as PQAs are affected by the critical process parameters (CPPs). Key points• Molecular integrity may suffer with increasing process intensity.• Galactosylated and sialylated N-glycans may decrease.• Perfusion culture appears to maintain protein charge structure. 
    more » « less
  4. In solid tumours, the abundance of macrophages is typically associated with a poor prognosis. However, macrophage clusters in tumour-cell nests have been associated with survival in some tumour types. Here, by using tumour organoids comprising macrophages and cancer cells opsonized via a monoclonal antibody, we show that highly ordered clusters of macrophages cooperatively phagocytose cancer cells to suppress tumour growth. In mice with poorly immunogenic tumours, the systemic delivery of macrophages with signal-regulatory protein alpha (SIRPα) genetically knocked out or else with blockade of the CD47–SIRPα macrophage checkpoint was combined with the monoclonal antibody and subsequently triggered the production of endogenous tumour-opsonizing immunoglobulin G, substantially increased the survival of the animals and helped confer durable protection from tumour re-challenge and metastasis. Maximizing phagocytic potency by increasing macrophage numbers, by tumour-cell opsonization and by disrupting the phagocytic checkpoint CD47– 
    more » « less
  5. Abstract A majority of the biotherapeutics industry today relies on the manufacturing of monoclonal antibodies from Chinese hamster ovary (CHO) cells, yet challenges remain with maintaining consistent product quality from high‐producing cell lines. Previous studies report the impact of individual trace metal supplemental on CHO cells, and thus, the combinatorial effects of these metals could be leveraged to improve bioprocesses further. A three‐level factorial experimental design was performed in fed‐batch shake flasks to evaluate the impact of time wise addition of individual or combined trace metals (zinc and copper) on CHO cell culture performance. Correlations among each factor (experimental parameters) and response variables (changes in cell culture performance) were examined based on their significance and goodness of fit to a partial least square's regression model. The model indicated that zinc concentration and time of addition counter‐influence peak viable cell density and antibody production. Meanwhile, early copper supplementation influenced late‐stage ROS activity in a dose‐dependent manner likely by alleviating cellular oxidative stress. Regression coefficients indicated that combined metal addition had less significant impact on titer and specific productivity compared to zinc addition alone, although titer increased the most under combined metal addition. Glycan analysis showed that combined metal addition reduced galactosylation to a greater extent than single metals when supplemented during the early growth phase. A validation experiment was performed to confirm the validity of the regression model by testing an optimized setpoint of metal supplement time and concentration to improve protein productivity. 
    more » « less