Numerous African American and Hispanic Students with disabilities are confronted with systemic and policy-based challenges preventing access to K-12 STEM-related and computer science education. In addition, the African American and Hispanic Students with Disabilities in the Computer Science Research Alliance conducted an NSF-funded study to understand teachers’ perceptions of district and school policies and practices that hinder the participation of African American and Hispanic students with disabilities in computer science education in Central Texas. The project’s research study fills a critical gap in the literature concerning the systemic barriers affecting African American and Hispanic students with disabilities in K12 computer science education.
more »
« less
Accessibility and Disability in PreK-12 CS: Results from a Landscape Survey of Teachers
Despite the interest in equity, little research has considered students with disabilities in PreK-12 computer science education. The 2022 Computer Science Teachers Association and Kapor Center facilitated Landscape Survey of PreK-12 CS Teachers, which had over 2200 responses, gives us new insight. There were few significant differences between the experiences and perceptions of teachers with disabilities and those without. Accessibility was the least taught computing concept. Furthermore, teachers reported on a variety of barriers that students with disabilities encounter related to structural barriers, students choosing note to take CS, and teachers' perceptions of student ability. The findings point to the need for interventions related to resources, outreach, and policy.
more »
« less
- PAR ID:
- 10537912
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400706264
- Page Range / eLocation ID:
- 13 to 20
- Format(s):
- Medium: X
- Location:
- Atlanta GA USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This article reports results from the implementation of a model of professional development (PD) to help K-5 teachers develop the knowledge and skills to teach Computer Science (CS) in classrooms of diverse students, including students with high-incidence disabilities. This article describes our Inclusive CS model of PD, how we made the PD model available to teachers during a pandemic and presents quantitative and qualitative results about the impact of the PD on teachers’ knowledge, comfort, and beliefs related to teaching computer science to students. Results indicate that the teachers’ knowledge, comfort, beliefs and perceptions about teaching CS to students with disabilities significantly improved. Teachers’ knowledge and understanding of Universal Design for Learning for supporting students in learning about CS also improved.more » « less
-
This research WIP paper describes computer science undergraduate students’ perceptions of career pathways and becoming K-12 computer science teachers. Computer science (CS) education has become critical with the rapid pace of technological development to better prepare students for national technology and economic competitiveness and security. According to Code.org, 57.5% of U.S. public high schools offer foundational computer science courses in 2023; unfortunately, access to the courses remains unequal and maintains wide disparities by race/ethnicity and social class. For instance, Hispanics are 1.4 times less likely to take foundational CS courses compared to their white and Asian peers, and students with low socio-economic status are underrepresented in the overall population. The shortage of CS teachers is one of the significant barriers to why minoritized groups of students do not have equal access to learning CS. Various programmatic efforts have been implemented to address the gap, including the recruitment of undergraduate students who will earn bachelor’s degrees in computing. This approach has been considered innovative in building a new pipeline for producing highly qualified CS teachers with the ability to transform computing education and the CS teacher community rather than training in-service teachers certified in other disciplines to receive credentials to teach CS. Studies report that CS degree recipients opt for industry roles and exhibit disinterest in alternative career pathways, such as teaching because they perceive this profession as having lower salaries and unfavorable aspects associated with the job. However, we need a more prosperous and in-depth understanding of why CS degree holders consider industry jobs of greater importance rather than teaching, which would reduce the disparity in K-12 computing education. As a first attempt to better understand the perceptions of computer science undergraduate students at an Hispanic-Serving Institution (HSI), we collected qualitative data (i.e., student artifacts) in a course offered in the computer science department. Driven by social cognitive career and FIT-choice theory, our findings from the preliminary analysis indicate that CS undergraduate students at an HSI acknowledged the importance of K-12 CS teachers in their communities, but at the same time, they have more concerns about the underpayment and undervaluation of the job. They have shown a conflict between their perceptions of teaching CS and their own career aspirations as CS teachers. These preliminary findings draw attention to the importance of uncovering common career plans among CS undergraduate students.more » « less
-
This research WIP paper describes computer science undergraduate students’ perceptions of career pathways and becoming K-12 computer science teachers. Computer science (CS) education has become critical with the rapid pace of technological development to better prepare students for national technology and economic competitiveness and security. According to Code.org, 57.5% of U.S. public high schools offer foundational computer science courses in 2023; unfortunately, access to the courses remains unequal and maintains wide disparities by race/ethnicity and social class. For instance, Hispanics are 1.4 times less likely to take foundational CS courses compared to their white and Asian peers, and students with low socio-economic status are underrepresented in the overall population. The shortage of CS teachers is one of the significant barriers to why minoritized groups of students do not have equal access to learning CS. Various programmatic efforts have been implemented to address the gap, including the recruitment of undergraduate students who will earn bachelor’s degrees in computing. This approach has been considered innovative in building a new pipeline for producing highly qualified CS teachers with the ability to transform computing education and the CS teacher community rather than training in-service teachers certified in other disciplines to receive credentials to teach CS. Studies report that CS degree recipients opt for industry roles and exhibit disinterest in alternative career pathways, such as teaching because they perceive this profession as having lower salaries and unfavorable aspects associated with the job. However, we need a more prosperous and in-depth understanding of why CS degree holders consider industry jobs of greater importance rather than teaching, which would reduce the disparity in K-12 computing education. As a first attempt to better understand the perceptions of computer science undergraduate students at an Hispanic-Serving Institution (HSI), we collected qualitative data (i.e., student artifacts) in a course offered in the computer science department. Driven by social cognitive career and FIT-choice theory, our findings from the preliminary analysis indicate that CS undergraduate students at an HSI acknowledged the importance of K-12 CS teachers in their communities, but at the same time, they have more concerns about the underpayment and undervaluation of the job. They have shown a conflict between their perceptions of teaching CS and their own career aspirations as CS teachers. These preliminary findings draw attention to the importance of uncovering common career plans among CS undergraduate students.more » « less
-
null (Ed.)Increasingly in K–12 schools, students are gaining access to computational thinking (CT) and computer science (CS). This access, however, is not always extended to students with disabilities. One way to increase CT and CS (CT/CS) exposure for students with disabilities is through preparing special education teachers to do so. In this study, researchers explore exposing special education preservice teachers to the ideas of CT/CS in the context of a mathematics methods course for students with disabilities or those at risk of disability. Through analyzing lesson plans and reflections from 31 preservice special education teachers, the researchers learned that overall emerging promise exists with regard to the limited exposure of preservice special education teachers to CT/CS in mathematics. Specifically, preservice teachers demonstrated the ability to include CT/CS in math lesson plans and showed understanding of how CT/CS might enhance instruction with students with disabilities via reflections on these lessons. The researchers, however, also found a need for increased experiences and opportunities for preservice special education teachers with CT/CS to more positively impact access for students with disabilities.more » « less
An official website of the United States government

