skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Entanglement Effect on Folding Behaviors of Semi-crystalline Polymer during Melt-Crystallization
In the earlier theoretical research, impact of entanglement on folding during crystallization was minimized. The combination of 13C isotope labeling and NMR spectroscopy allows us to quantitatively determine stem to stem distance as well as chain folding distance, hence, we are able to probe chain-level structure. Our recent work indicated that polymer chains are possible to fold prior to crystallization. In this poster, we would like to investigate the folding structure of a semi-crystalline polymer in melt-grown crystals (mgc) by using solid-state NMR spectroscopy and SAXS measurement. First, various 13C enriched poly(L-lactic acid) (PLLA) samples with different molecular weights (Mw = 2.5k – 300k g/mol) across critical entanglement length (Mc = 16k g/mol) were prepared in order to observe the molecular weight dependence of folding structure of PLLA. We revealed that entanglements influence the folding number during crystallization. Second, we attempt to observe the entanglement effect through diluting entanglement density, i.e., blending the PLLA above and below the Mc with different ratio and molecular weight. Based on the experimental results, we would like to highlight the impact of entanglements on folding of semicrystalline polymer in the melt-grown crystal.  more » « less
Award ID(s):
2004393
PAR ID:
10537929
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Format(s):
Medium: X
Location:
Minneapolis
Sponsoring Org:
National Science Foundation
More Like this
  1. Chain-level structure of semicrystalline polymers in melt- and solution-grown crystals has been debated over the past half century. Recently, 13C–13C double quantum (DQ) Nuclear Magnetic Resonance (NMR) spectroscopy has been successfully applied to investigate chain-folding (CF) structure and packing structure of 13C enriched polymers after solution and melt crystallization. We review recent NMR studies for (i) packing structure, (ii) chain trajectory, (iii) conformation of the folded chains, (iv) nucleation mechanisms, (v) deformation mechanism, and (vi) molecular dynamics of semicrystalline polymers. 
    more » « less
  2. Chain entanglements play a crucial role in polymer crystallization, yet their effects on crystallization remain not fully understood. Freeze-drying is one way to potentially preserve disentangled states of long polymer chains. In fact, it is known that freeze-drying (FD) significantly accelerates the crystallization kinetics of semicrystalline polymers. However, the chain-level structure of the FD polymer chains without a long-range order (glass) has been a debatable matter. In this study, we investigate the effect of freeze-drying on single chain-level structures of 13CH3 enriched poly(L-lactic Acid) and 13CH enriched poly(D-lactic acid) racemate by using 1H-1H spin diffusion via 13C detection solid-state NMR spectroscopy. Spatial distributions of PLLA and PDLA glassy chains in the range of a few Å – 30 nm are evaluated via 1H-1H spin diffusion. This analysis provides core-shell morphology of single chains where the outer shell layers include both PDLA and PLLA mixture and the inner core possess a single component. 
    more » « less
  3. Semicrystalline polymers exhibit different re-organization behaviors during heating depending on crystal growth methods. Upon heating, solution-grown crystals (SGCs) undergo lamellar doubling while melt-grown crystals (MGCs) show a gradual increase in lamellar thickness. However, the molecular-level mechanisms driving these distinct reorganization processes remain unresolved. In this study, we investigate the morphological development, crystalline chain dynamics, chain packing, and chain-folding structures of poly (L-Lactic Acid) in both SGCs and MGCs upon heating by using solid-state NMR spectroscopy and in-situ Small Angle X-ray Scattering (SAXS). By comparing the hierarchical semicrystalline structures and crystalline chain dynamics in SGCs and MGCs, it is found that the chain-folding structure and the presence or absence of entanglements are key factors influencing the thermal stability and different reorganization mechanisms of mobile polymer crystals. 
    more » « less
  4. Korley, LaShanda (Ed.)
    The crystallization pathway of long and flexible polymer chains is debatable because of the lack of an initial melt/glass structure. To identify the crystallization pathway, we focus on two binary blends of poly(lactic acid) racemates that form stereocomplex crystals (SCCs). NMR crystallography is used to identify the stereocomplex (SC) structure and SC fraction with or without long-range order. There are significant structural analogies between glass and crystals for both high-molecular-weight (M) and low-M racemates. The observed analogies and kinetics of crystallization indicate that polymer crystallization proceeds via chain segments moving the least possible distance (“freezing in” mechanism) and that topological constraints govern nucleation barriers. 
    more » « less
  5. Abstract Single crystals that do not obey translational symmetry have been reported in various material systems. In polymers, twisted crystals are typically formed in banded spherulites, while a class of non‐flat polymer single crystals (PSCs) has been observed. Herein, we report the formation of scrolled single crystals of biodegradable polymer poly(L‐lactic acid) (PLLA). While classical 2‐dimensional single crystals formed in solution‐crystallized PLLA are flat, we show that PLLA crystals bend into scrolls when the polymer molecular weight is low. The formation of these unique scrolled PLLA single crystals depends on polymer chain ends and the polymer molecular weight. This work, therefore, demonstrates a new mechanism to break translational symmetry in PSC growth. 
    more » « less