Rapid, millennial-scale changes in sea level have been proposed for the beginning, middle, and/or end of the Last Interglacial (LIG) [~129 to 116 thousand years ago (ka)]. Each of these scenarios has different implications for polar ice sheet behavior in a warming world. Here, we present a suite of230Th ages for fossil corals in the Seychelles within a detailed sedimentary and stratigraphic context to evaluate the evolution of sea level during this past warm period. The rise to peak sea level at ~122 to 123 ka was punctuated by two abrupt stratigraphic discontinuities, defining three distinct generations of reef growth. We attribute the evidence of episodic reef growth and ephemeral sea-level fall to the competing influence of Northern Hemisphere ice melt and Antarctic ice regrowth. Asynchronous ice sheet contributions would mask the full extent of retreat for individual ice sheets during the LIG and imply greater temperature sensitivity of ice sheets than previously inferred.
more »
« less
Polar bear's range dynamics and survival in the Holocene
Polar bear (Ursus maritimus) is the apex predator of the Arctic, largely dependent on sea-ice. The expected disappearance of the ice cover of the Arctic seas by the mid 21st century is predicted to cause a dramatic decrease in the global range and population size of the species. To place this scenario against the backdrop of past distribution changes and their causes, we use a fossil dataset to investigate the polar bear’s past distribution dynamics during the Late Glacial and the Holocene. Fossil results indicate that during the last deglaciation, polar bears were present at the southwestern margin of the Scandinavian Ice Sheet, surviving until the earliest Holocene. There are no Arctic polar bear findings from 8,000-6,000 years ago (8-6 ka), the Holocene’s warmest period. However, fossils that date from 8-9 ka and 5-6 ka suggest that the species likely survived this period in cold refugia located near the East Siberian Sea, northern Greenland and the Canadian Archipelago. Polar bear range expansion is documented by an increase in fossils during the last 4,000 years in tandem with cooling climate and expanding Arctic sea ice. The results document changes in polar bear’s distribution in response to Late Glacial and Holocene Arctic temperature and sea ice trends.
more »
« less
- Award ID(s):
- 2110923
- PAR ID:
- 10538049
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Quaternary Science Reviews
- Volume:
- 317
- Issue:
- C
- ISSN:
- 0277-3791
- Page Range / eLocation ID:
- 108277
- Subject(s) / Keyword(s):
- polar bear Holocene Arctic sea ice fossils distribution dynamics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Over recent decades Antarctic sea-ice extent has increased, alongsidewidespread ice shelf thinning and freshening of waters along the Antarcticmargin. In contrast, Earth system models generally simulate a decrease insea ice. Circulation of water masses beneath large-cavity ice shelves is notincluded in current Earth System models and may be a driver of thisphenomena. We examine a Holocene sediment core off East Antarctica thatrecords the Neoglacial transition, the last major baseline shift ofAntarctic sea ice, and part of a late-Holocene global cooling trend. Weprovide a multi-proxy record of Holocene glacial meltwater input, sedimenttransport, and sea-ice variability. Our record, supported by high-resolutionocean modelling, shows that a rapid Antarctic sea-ice increase during themid-Holocene (∼ 4.5 ka) occurred against a backdrop ofincreasing glacial meltwater input and gradual climate warming. We suggestthat mid-Holocene ice shelf cavity expansion led to cooling of surfacewaters and sea-ice growth that slowed basal ice shelf melting.Incorporating this feedback mechanism into global climate models will beimportant for future projections of Antarctic changes.more » « less
-
The Holocene hydroclimate evolution and underlying mechanisms modulating the East Asian summer monsoon (EASM) remains controversial, especially in south eastern China. Here we present a multiproxy peat record of monsoon evolution from southeastern China covering the last 14 ka. Our new records show a relatively weaker EASM but wetter hydroclimate during the early (10 to 8 ka) and late Holocene (after 5.4 ka), while a stronger EASM and overall drier climate during the mid-Holocene (8 to 5.4 ka). In line with nearby speleothem records, our results reveal a dominant control of the northern-latitude ice-sheet meltwater forcing on millennial-scale East Asian hydroclimate variability during the last deglaciation and early Holocene. This dominant influence, however, likely waned once the global sea level had stabilized during the mid-to-late Holocene, giving way to other drivers of the monsoon and hydroclimate, including a combination of summer insolation and teleconnection patterns associated with vegetation-dust feedbacks.more » « less
-
Abstract. The penultimate deglaciation (PDG, ∼138–128 thousand years before present, hereafter ka) is the transition fromthe penultimate glacial maximum (PGM)to the Last Interglacial (LIG, ∼129–116 ka).The LIG stands out as one of the warmest interglacials of the last 800 000 years (hereafter kyr),with high-latitude temperature warmer than today and global sea level likely higher by at least 6 m.Considering the transient nature of the Earth system,the LIG climate and ice-sheet evolution were certainly influenced by the changesoccurring during the penultimate deglaciation.It is thus importantto investigate, with coupled atmosphere–ocean general circulation models (AOGCMs),the climate and environmental response to the large changesin boundary conditions(i.e. orbital configuration, atmospheric greenhouse gas concentrations, ice-sheet geometry and associated meltwater fluxes) occurring during the penultimate deglaciation. A deglaciation working group has recently been set up as part of the Paleoclimate Modelling Intercomparison Project (PMIP) phase 4, with a protocolto perform transient simulations of the last deglaciation (19–11 ka; although the protocol covers 26–0 ka).Similar to the last deglaciation, the disintegration of continental ice sheets during the penultimate deglaciation led to significant changesin the oceanic circulation during Heinrich Stadial 11 (∼136–129 ka).However, the two deglaciations bear significant differences in magnitude and temporal evolution of climate and environmental changes. Here, as part of the Past Global Changes (PAGES)-PMIP working group on Quaternary interglacials (QUIGS), we propose a protocol to perform transient simulations of the penultimate deglaciationunder the auspices of PMIP4.This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration ofcontinental ice sheets.This experiment is designed for AOGCMs to assessthe coupled response of the climate system to all forcings.Additional sensitivity experiments are proposed to evaluate the response to each forcing.Finally, a selection of paleo-records representing different parts of the climate system is presented, providing an appropriatebenchmark for upcoming model–data comparisons across the penultimate deglaciation.more » « less
-
Polar temperatures during the Last Interglacial [LIG; ~129 to 116 thousand years (ka)] were warmer than today, making this time period an important testing ground to better understand how ice sheets respond to warming. However, it remains debated how much and when the Antarctic and Greenland ice sheets changed during this period. Here, we present a combination of new and existing absolutely dated LIG sea-level observations from Britain, France, and Denmark. Because of glacial isostatic adjustment (GIA), the LIG Greenland ice melt contribution to sea-level change in this region is small, which allows us to constrain Antarctic ice change. We find that the Antarctic contribution to LIG global mean sea level peaked early in the interglacial (before 126 ka), with a maximum contribution of 5.7 m (50th percentile, 3.6 to 8.7 m central 68% probability) before declining. Our results support an asynchronous melt history over the LIG, with an early Antarctic contribution followed by later Greenland Ice Sheet mass loss.more » « less
An official website of the United States government

