Abstract The mitochondrial calcium uniporter (MCU) mediates uptake of calcium ions (Ca2+) into the mitochondria, a process that is vital for maintaining normal cellular function. Inhibitors of the MCU, the most promising of which are dinuclear ruthenium coordination compounds, have found use as both therapeutic agents and tools for studying the importance of this ion channel. In this study, six Co3+cage compounds with sarcophagine‐like ligands were assessed for their abilities to inhibit MCU‐mediated mitochondrial Ca2+uptake. These complexes were synthesized and characterized according to literature procedures and then investigated in cellular systems for their MCU‐inhibitory activities. Among these six compounds, [Co(sen)]3+(3, sen=5‐(4‐amino‐2‐azabutyl)‐5‐methyl‐3,7‐diaza‐1,9‐nonanediamine) was identified to be a potent MCU inhibitor, with IC50values of inhibition of 160 and 180 nM in permeabilized HeLa and HEK293T cells, respectively. Furthermore, the cellular uptake of compound3was determined, revealing moderate accumulation in cells. Most notably,3was demonstrated to operate in intact cells as an MCU inhibitor. Collectively, this work presents the viability of using cobalt coordination complexes as MCU inhibitors, providing a new direction for researchers to investigate.
more »
« less
Association between MCU Gene Polymorphisms with Obesity: Findings from the All of Us Research Program
Obesity is a public health crisis, and its prevalence disproportionately affects African Americans in the United States. Dysregulation of organelle calcium homeostasis is associated with obesity. The mitochondrial calcium uniporter (MCU) complex is primarily responsible for mitochondrial calcium homeostasis. Obesity is a multifactorial disease in which genetic underpinnings such as single-nucleotide polymorphisms (SNPs) may contribute to disease progression. The objective of this study was to identify genetic variations of MCU with anthropometric measurements and obesity in the All of Us Research Program. Methods: We used an additive genetic model to assess the association between obesity traits (body mass index (BMI), waist and hip circumference) and selected MCU SNPs in 19,325 participants (3221 normal weight and 16,104 obese). Eleven common MCU SNPs with a minor allele frequency ≥ 5% were used for analysis. Results: We observed three MCU SNPs in self-reported Black/African American (B/AA) men, and six MCU SNPs in B/AA women associated with increased risk of obesity, whereas six MCU SNPs in White men, and nine MCU SNPs in White women were protective against obesity development. Conclusions: This study found associations of MCU SNPs with obesity, providing evidence of a potential predictor of obesity susceptibility in B/AA adults.
more »
« less
- Award ID(s):
- 2100832
- PAR ID:
- 10538056
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Genes
- Volume:
- 15
- Issue:
- 4
- ISSN:
- 2073-4425
- Page Range / eLocation ID:
- 512
- Subject(s) / Keyword(s):
- SNP MCU obesity All of Us
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Mitochondria house evolutionarily conserved pathways of carbon and nitrogen metabolism that drive cellular energy production. Mitochondrial bioenergetics is regulated by calcium uptake through the mitochondrial calcium uniporter (MCU), a multi-protein complex whose assembly in the inner mitochondrial membrane is facilitated by the scaffold factor MCUR1. Intriguingly, many fungi that lack MCU contain MCUR1 homologs, suggesting alternate functions. Herein, we characterizeSaccharomyces cerevisiaehomologs Put6 and Put7 of MCUR1 as regulators of mitochondrial proline metabolism. Put6 and Put7 are tethered to the inner mitochondrial membrane in a large hetero-oligomeric complex, whose abundance is regulated by proline. Loss of this complex perturbs mitochondrial proline homeostasis and cellular redox balance. Yeast cells lacking either Put6 or Put7 exhibit a pronounced defect in proline utilization, which can be corrected by the heterologous expression of human MCUR1. Our work uncovers an unexpected role of MCUR1 homologs in mitochondrial proline metabolism.more » « less
-
Abstract Inhibitors of the mitochondrial calcium uniporter (MCU) are valuable tools for studying the role of mitochondrial Ca2+in various pathophysiological conditions. In this study, a new fluorogenic MCU inhibitor,RuOCou, is presented. This compound is an analogue of the known MCU inhibitor Ru265 that contains fluorescent axial coumarin carboxylate ligands. Upon aquation ofRuOCouand release of the axial coumarin ligands, a simultaneous increase in its MCU‐inhibitory activity and fluorescence intensity is observed. The fluorescence response of this compound enabled its aquation to be monitored in both HeLa cell lysates and live HeLa cells. This fluorogenic prodrug represents a potential theranostic MCU inhibitor that can be leveraged for the treatment of human diseases related to MCU activity.more » « less
-
The incarcerated population has little or no access to science education programs, STEM resources, or sci-entists. We explored the effects of a low-cost, potentially high-impact informal science education program that enabled NASA scientists to provide astrobiology lectures to adults inside 16 correctional institutions in three states. Post- versus pre-lecture surveys suggest that presentations significantly increased science content knowledge, positively shifted attitudes about science and scientists, increased a sense of science self-identity, and enhanced behavioral intentions about communicating science. These were significant across ethnicity, gender, education level, and institution type, size, location, and state. Men scored higher than women on pre-lecture survey questions. Among men, participants with greater levels of education and White non-Hispanics scored higher than those with less educational attainment and African American and other minority participants. Increases in science content knowledge were greater for women than men and, among men, for those with lower levels of education and African American participants. Women increased more in science identity than did men. Thus, even limited exposure to voluntary, non-credit science lectures delivered by scientists can be an effective way to broker a relationship to science for this underserved public group and can potentially serve as a step to broaden participation in science.more » « less
-
Arachidonic acid (AA) metabolites have been associated with several diseases across various organ systems, including the cardiovascular, pulmonary, and renal systems. Lipid mediators generated from AA oxidation have been studied to control macrophages, T-cells, cytokines, and fibroblasts, and regulate inflammatory mediators that induce vascular remodeling and dysfunction. AA is metabolized by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) to generate anti-inflammatory, pro-inflammatory, and pro-resolutory oxidized lipids. As comorbid states such as diabetes, hypertension, and obesity become more prevalent in cardiovascular disease, studying the expression of AA pathway genes and their association with these diseases can provide unique pathophysiological insights. In addition, the AA pathway of oxidized lipids exhibits diverse functions across different organ systems, where a lipid can be both anti-inflammatory and pro-inflammatory depending on the location of metabolic activity. Therefore, we aimed to characterize the gene expression of these lipid enzymes and receptors throughout multi-organ diseases via a transcriptomic meta-analysis using the Gene Expression Omnibus (GEO) Database. In our study, we found that distinct AA pathways were expressed in various comorbid conditions, especially those with prominent inflammatory risk factors. Comorbidities, such as hypertension, diabetes, and obesity appeared to contribute to elevated expression of pro-inflammatory lipid mediator genes. Our results demonstrate that expression of inflammatory AA pathway genes may potentiate and attenuate disease; therefore, we suggest further exploration of these pathways as therapeutic targets to improve outcomes.more » « less
An official website of the United States government

