skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stabilizing *CO 2 Intermediates at the Acidic Interface using Molecularly Dispersed Cobalt Phthalocyanine as Catalysts for CO 2 Reduction
Abstract CO2electroreduction (CO2R) operating in acidic media circumvents the problems of carbonate formation and CO2crossover in neutral/alkaline electrolyzers. Alkali cations have been universally recognized as indispensable components for acidic CO2R, while they cause the inevitable issue of salt precipitation. It is therefore desirable to realize alkali‐cation‐free CO2R in pure acid. However, without alkali cations, stabilizing *CO2intermediates by catalyst itself at the acidic interface poses as a challenge. Herein, we first demonstrate that a carbon nanotube‐supported molecularly dispersed cobalt phthalocyanine (CoPc@CNT) catalyst provides the Co single‐atom active site with energetically localizeddstates to strengthen the adsorbate‐surface interactions, which stabilizes *CO2intermediates at the acidic interface (pH=1). As a result, we realize CO2conversion to CO in pure acid with a faradaic efficiency of 60 % at pH=2 in flow cell. Furthermore, CO2is successfully converted in cation exchanged membrane‐based electrode assembly with a faradaic efficiency of 73 %. For CoPc@CNT, acidic conditions also promote the intrinsic activity of CO2R compared to alkaline conditions, since the potential‐limiting step, *CO2to *COOH, is pH‐dependent. This work provides a new understanding for the stabilization of reaction intermediates and facilitates the designs of catalysts and devices for acidic CO2R.  more » « less
Award ID(s):
2103116
PAR ID:
10538183
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley, VCH
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
63
Issue:
8
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. CO2 electroreduction (CO2ER) by using renewable energy resources is a promising method to mitigate the CO2 level in the atmosphere as well as producing valuable chemicals. Local environment at the electrode-electrolyte interface plays a key role in CO2ER activity and selectivity along with its competing hydrogen evolution reaction (HER). In addition to the catalyst and reactor design, electrolyte has also a significant impact on the interface. Herein, electrolyte additives were used to modify the local environment around the Cu catalyst during CO2ER. To this purpose, 10mM of ionic additives with bis(trifluoromethylsulfonyl)imide ([NTF2]-) and dicyanamide ([DCA]-) as anions and 1-butyl-3-methylimidazolium ([BMIM]+), potassium (K+), or sodium (Na+) as cations have been added to an aqueous potassium bicarbonate solution (0.1 M KHCO3). COMSOL Multiphysics was also used to calculate the local pH and CO2 concentration at electrode-electrolyte interface in different electrolytes. Results showed that the local environment modifications by the electrolyte additives altered the activity and selectivity of Cu in CO2ER. It was found that the CO2ER activity at -0.92 V was enhanced when using anion with high CO2 affinity and high hydrophobicity such as [NTF2]–. Among [NTF2]–-based additives, [BMIM][NTF2] had a higher faradaic efficiency (FE) for formate (38.7%) compared to K[NTF2] (23.2%) and Na[NTF2] (18.5%) at -0.92 V likely due to the presence of imidazolium cation which can further stabilize the intermediates on the surface and enhance CO2ER. Electrolytes containing [DCA]–-based additives with high hydrophilicity and low CO2 affinity had a very high HER selectivity (>90% FEH2) and low CO2ER selectivity regardless of the cation nature. This observation is attributed to the presence of hydrophilic [BMIM][DCA] in the vicinity of the catalyst which impacts the microenvironment around the catalyst. We observed that [DCA]– anions have a high affinity to adsorb on Cu catalysts as soon as the catalyst is submerged in the electrolyte. Although FTIR showed that [DCA]– anions desorb from the surface at negative potentials, it is likely that [DCA]– anions still remain in the proximity of the electrode, next to the adsorbed cations, impacting the transport of H2O and CO2, and altering the product selectivity. COMSOL calculations showed that the local pH is directly proportional to the H2 evolution activity. Also, hydrophilic salts such as those with the [DCA]– anion had a more alkaline local pH which leads to a lower CO2 concentration in the vicinity of the catalyst. 
    more » « less
  2. Abstract Electrochemical reduction of carbon dioxide (CO2RR) to value‐added products is a promising strategy to alleviate the greenhouse gas effect. Molecular catalysts, such as cobalt (II) phthalocyanine (CoPc), are known to be efficient electrocatalysts that are capable of converting CO2into carbon monoxide (CO). Herein, we report an axial modification strategy to enhance CoPc's CO2RR performance. After coordinating with axial ligands, the electron density of Co was depleted via π‐backbonding. This π‐backbonding weakened the Co‐CO bond, resulting in rapid desorption of CO. Also, the presence axial ligands elevated the Co dz2orbital energy, resulting in a significantly enhanced CO selectivity, evidenced by an increased faradaic efficiency (FE) from 82 % (CoPc) to 91 % and 94 % with the presence of pyridine (CoPc‐py) and imidizal ligands (CoPc‐im), respectively, at −0.82 V vs. RHE. Density functional theory calculations reveal that axial ligation of CoPc can reduce the energy barrier for CO2activation and facilitate the formation of*COOH. 
    more » « less
  3. Abstract The conversion of waste CO2to value‐added chemicals through electrochemical reduction is a promising technology for mitigating climate change while simultaneously providing economic opportunities. The use of non‐aqueous solvents like methanol allows for higher CO2availability and novel products. In this work, the electrochemistry of CO2reduction in acidic methanol catholyte at a Pb working electrode was investigated while using a separate aqueous anolyte to promote a sustainable water oxidation half‐reaction. The selectivity among methyl formate (a product unique to reduction of CO2in methanol), formic acid, and formate was critically dependent on the catholyte pH, with higher pH conditions leading to formate and low pH favoring methyl formate. The potential dependence of the product distribution in acidic catholyte was also investigated, with a faradaic efficiency for methyl formate as high as 75 % measured at −2.0 V vs. Ag/AgCl. 
    more » « less
  4. The strong binding energy of CO on iron surfaces has rendered Fe electrodes as poor electrochemical CO2reduction (eCO2R) catalysts, predominantly producing hydrogen. Recent studies on tuning the microenvironment near the catalyst surfaces by tuning the local electric field in nonaqueous environments have been shown to promote eCO2R by facilitating the CO2activation step. Herein, the use of tetraethylammonium (TEA) cation to tune the electric field on Fe surfaces, such that it leads to the formation of industrially relevant oxalates (C2products), is reported. At optimal cation concentrations, the developed eCO2R system achieves 25 mA cm−2of current density and Faradaic Efficiencies up to 75% toward oxalate. Furthermore, in situ attenuated total reflectance Fourier transform infrared spectroscopy indicates the presence of surface‐adsorbed TEA cations and other species on the Fe surfaces, leading to the well‐known outer‐sphere mechanism of electron transfer during eCO2R. The employment of Fe, along with microenvironment tuning, not only demonstrates high catalytic performance but also provides a safer and more sustainable alternative to toxic catalysts such as Pb that dominate the nonaqueous eCO2R literature. These findings pave the way for further optimization and scale‐up of the process, offering a viable route for sustainable chemical production and CO2mitigation. 
    more » « less
  5. Abstract Electrochemical oxygen reduction to hydrogen peroxide (H 2 O 2 ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H 2 O 2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm −2 ) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a “shielding effect” of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H 2 O 2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H 2 O 2 via implementing this cation effect for practical applications. 
    more » « less