Abstract In seasonally dry ecosystems, which are common in sub‐Saharan Africa, precipitation after dry periods can cause large pulses of nitrous oxide (N2O), a greenhouse gas, and of nitric oxide (NO), a precursor to tropospheric ozone pollution. Agricultural practices can change soil characteristics, affecting trace N gas emissions. To evaluate the effects of land use on trace gas pulses at the start of the rainy season, we conducted laboratory measurements of N2O and NO fluxes from soils collected from four pairs of agricultural and natural savannah sites across the Sudano‐Sahelian zone. We also conducted in situ wetting experiments, measuring NO fluxes from fallow sandy soils in Tanzania and NO and N2O fluxes from clayey soils in Kenya with different histories of fertilizer use. In incubation studies, NO increased by a factor of 7 to 25 following wetting, and N2O fluxes shifted from negative to positive; cumulative NO fluxes were an order of magnitude larger than cumulative N2O fluxes. In Kenya and Tanzania, NO increased by 1 to 2 orders of magnitude after wetting, and N2O increased by a factor of roughly 5 to 10. Cumulative NO fluxes ranged from 87 to 115 g NO‐N ha−1across both countries—a substantial proportion of annual emissions—compared to roughly 1 g N2O‐N in Kenya. There were no effects of land use or fertilization history on the magnitude of NO or N2O pulses, though land use may have been confounded with differences in soil texture potentially limiting the ability to detect land use effects.
more »
« less
Insights on Na 3 PS 4 Solid-State Electrolyte Dry Films: Interfacial Stability and Dry Room Compatibility
- PAR ID:
- 10538190
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Energy Letters
- Volume:
- 9
- Issue:
- 5
- ISSN:
- 2380-8195
- Page Range / eLocation ID:
- 2293 to 2302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Patterning of NiO/Ga 2 O 3 heterojunctions requires development of selective wet and dry etch processes. Solutions of 1:4 HNO 3 :H 2 O exhibited measurable etch rates for NiO above 40 °C and activation energy for wet etching of 172.9 kJ.mol −1 (41.3 kCal.mol −1 , 1.8 eV atom −1 ), which is firmly in the reaction-limited regime. The selectivity over β -Ga 2 O 3 was infinite for temperatures up to 55 °C. The strong negative enthalpy for producing the etch product Ga(OH) 4 suggests HNO 3 -based wet etching of NiO occurs via formation and dissolution of hydroxides. For dry etching, Cl 2 /Ar Inductively Coupled Plasmas produced etch rates for NiO up to 800 Å.min −1 , with maximum selectivities of <1 over β -Ga 2 O 3 . The ion energy threshold for initiation of etching of NiO was ∼55 eV and the etch mechanism was ion-driven, as determined the linear dependence of etch rate on the square root of ion energy incident on the surface.more » « less
-
Abstract In this work, a new type of multifunctional materials (MFMs) called self‐regenerative Ni‐doped CaTiO3/CaO is introduced for the integrated CO2capture and dry reforming of methane (ICCDRM). These materials consist of a catalytically active Ni‐doped CaTiO3and a CO2sorbent, CaO. The article proposes a concept where the Ni catalyst can be regenerated in situ, which is crucial for ICCDRM. Exsolved Ni nanoparticles are evenly distributed on the surface of CaTiO3under H2or CH4, and are re‐dispersed back into the CaTiO3lattice under CO2. The Ni‐doped CaTiO3/CaO MFMs show stable CO2capture capacity and syngas productivity for 30 cycles of ICCDRM. The presence of CaTiO3between CaO grains prevents CaO/CaCO3thermal sintering during carbonation and decarbonation. Moreover, the strong interaction of CaTiO3with exsolved Ni mitigates severe accumulation of coke deposition. This concept can be useful for developing MFMs with improved properties that can advance integrated carbon capture and conversion.more » « less
-
Abstract Pore size distribution and surface chemistry of bio‐derived (milk) microporous dominated carbon “MDC” is synergistically tuned, allowing for promising carbon capture in a dry CO2atmosphere and in mixed H2O–CO2. The capture capacity is attributed to the synergy of a large total surface area with an ultramicroporous and microporous texture (e.g.,Stot1889 m2g−1,Smic1755 m2g−1,Sultra1393 m2g−1), and a high content of nitrogen and oxygen heteroatom moieties (e.g., 5 at% N, 10.5 at% O). Tailored two‐step low‐temperature pyrolysis‐chemical activation is employed to take advantage of the intrinsic properties of the precursor, allowing for this unusual textural properties‐heteroatoms combination. For example, tested at 1 bar and 295 or 273 K, MDCs adsorb up to 22.0 and 29.4 wt% CO2, respectively. MDCs are also tailored to be hydrophobic, with CO2/H2O adsorption selectivity even after prolonged cycling. Maximum working capacities of 10.8 wt% for pure CO2and 3.5 wt% for a flue gas simulant (15% CO2, 85% N2) are measured using temperature swing adsorption with dynamic purge gases, while being minimally affected by humid conditions. This work is directly aligned with the United Nation’s Sustainable Development Goal 13, take urgent action to combat climate change and its impacts.more » « less
An official website of the United States government

