ABSTRACT ObjectiveApex-predator-initiated trophic cascades occur in many nearshore marine habitats that simultaneously serve as critical habitat and food sources for commercially and ecologically important species, including juvenile Pacific salmon Oncorhynchus spp. Yet the potential relationships among apex predators (e.g., sea otters Enhydra lutris), submerged aquatic vegetation, and juvenile salmonids are not well understood. In Southeast Alaska, we investigated (1) juvenile salmonid abundance in eelgrass Zostera marina meadows and understory kelp beds and (2) potential drivers of juvenile Chum Salmon Oncorhynchus keta and Pink Salmon O. gorbuscha abundance in eelgrass meadows. MethodsWe analyzed historic (1998–2007) beach seine surveys to compare juvenile salmonid abundance in nearshore habitats. We then employed the same survey (2017, 2019) in eelgrass to quantify juvenile salmonid abundance alongside the influence of sea otter density (number/km2), distance from anadromous stream (km), seasonality, sediment categorization, and aboveground eelgrass biomass (g/m2). ResultsWe found greater abundance of Chum Salmon in understory kelp compared with eelgrass, whereas Pink Salmon abundance was similar between habitats. In eelgrass, Chum Salmon abundance peaked in June and was positively associated with sea otter density. Pink Salmon abundance varied seasonally, peaking in May. We found increased Pink Salmon abundance with increasing sea otter density and distance from anadromous stream and decreased abundance with increased eelgrass biomass. ConclusionGrowth and survival while juvenile salmonids are out-migrating from streams and relying on nearshore vegetated habitats can determine if they recruit to fisheries as adults. Here, we highlight the use of multiple habitats, eelgrass and understory kelp, indicating that both should be explored as critical nursery habitat. We present evidence of indirect effects of sea otters influencing the abundance of juvenile salmonids, with potential further implications as sea otter populations expand. Apex predators, quality of vegetated habitats, and their structuring roles in the nearshore are critical for informing adaptive coastal fisheries management.
more »
« less
Opening a can of worms: Archived canned fish fillets reveal 40 years of change in parasite burden for four Alaskan salmon species
Abstract How has parasitism changed for Alaskan salmon over the past several decades? Parasitological assessments of salmon are inconsistent across time, and though parasite data are sometimes noted when processing fillets for the market, those data are not retained for more than a few years. The landscape of parasite risk is changing for salmon, and long‐term data are needed to quantify this change. Parasitic nematodes of the family Anisakidae (anisakids) use salmonid fishes as intermediate or paratenic hosts in life cycles that terminate in marine mammal definitive hosts. Alaskan marine mammals have been protected since the 1970s, and as populations recover, the density of definitive hosts in this region has increased. To assess whether the anisakid burden has changed in salmonids over time, we used a novel data source: salmon that were caught, canned, and thermally processed for human consumption in Alaska, USA. We examined canned fillets of chum (Oncorhynchus keta,n = 42), coho (Oncorhynchus kisutch,n = 22), pink (Oncorhynchus gorbuscha,n = 62), and sockeye salmon (Oncorhynchus nerka,n = 52) processed between 1979 and 2019. We dissected each fillet and quantified the number of worms per gram of salmon tissue. Anisakid burden increased over time in chum and pink salmon, but there was no change in sockeye or coho salmon. This difference may be due to differences in the prey preferences of each species, or to differences in the parasite species detected across hosts. Canned fish serve as a window into the past, providing information that would otherwise be lost, including information on changes over time in the parasite burden of commercially, culturally, and ecologically important fish species.
more »
« less
- Award ID(s):
- 2141898
- PAR ID:
- 10538218
- Publisher / Repository:
- Ecology and Evolution
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 14
- Issue:
- 4
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The development of hydrokinetic turbines has been motivated by the desire to reduce fossil fuel reliance, energy production costs, and greenhouse gas emissions. Detailed information about fish interactions with hydrokinetic turbines is limited; therefore, this study sought to characterize the interactions between a turbine (RivGen; Ocean Renewable Power Company) and Sockeye Salmon Oncorhynchus nerka from one of the most productive populations in the world—that in the Kvichak River, Alaska. By viewing real-time video imagery, our objectives were to quantify the number of Sockeye Salmon smolts that interacted with the turbine and to assess the behaviors/outcomes of these interactions during the species' smolt out-migration. From May 21 to June 10, 2021, a total of 2,374 Sockeye Salmon smolts passed through the field of view of cameras placed immediately downstream of the hydrokinetic turbine. The majority of these observed events occurred over a short (5-d) time period from late May to early June during periods of darkness (0000–0400 hours). Fish were observed passing through the hydrokinetic turbine in both normal and disoriented manners, with the rotational status/speed of the hydrokinetic turbine appearing to influence passage behavior. Blade strikes on fish were also observed, all of which occurred when the turbine was rotating at high “production” speeds. After temporally and spatially extrapolating the observed fish interactions to account for our subsampling, the results suggest that when monitoring was conducted, the hydrokinetic turbine interacted with approximately 200,000 Sockeye Salmon smolts during this species' smolt out-migration period. This study adds to the sparse knowledge base on fish interactions with emerging riverine hydrokinetic devices and may inform strategies to mitigate the impacts of developing energy projects on socially and culturally important fisheries.more » « less
-
Salmonids are ideal models as many species follow a distinct developmental program from demersal eggs and a large yolk sac to hatching at an advanced developmental stage. Further, these economically important teleosts inhabit both marine- and freshwaters and experience diverse light environments during their life histories. At a genome level, salmonids have undergone a salmonid-specific fourth whole genome duplication event (Ss4R) compared to other teleosts that are already more genetically diverse compared to many non-teleost vertebrates. Thus, salmonids display phenotypically plastic visual systems that appear to be closely related to their anadromous migration patterns. This is most likely due to a complex interplay between their larger, more gene-rich genomes and broad spectrally enriched habitats; however, the molecular basis and functional consequences for such diversity is not fully understood. This study used advances in genome sequencing to identify the repertoire and genome organization of visual opsin genes (those primarily expressed in retinal photoreceptors) from six different salmonids [Atlantic salmon ( Salmo salar ), brown trout ( Salmo trutta ), Chinook salmon ( Oncorhynchus tshawytcha ), coho salmon ( Oncorhynchus kisutch ), rainbow trout ( Oncorhynchus mykiss ), and sockeye salmon ( Oncorhynchus nerka )] compared to the northern pike ( Esox lucius ), a closely related non-salmonid species. Results identified multiple orthologues for all five visual opsin classes, except for presence of a single short-wavelength-sensitive-2 opsin gene. Several visual opsin genes were not retained after the Ss4R duplication event, which is consistent with the concept of salmonid rediploidization. Developmentally, transcriptomic analyzes of Atlantic salmon revealed differential expression within each opsin class, with two of the long-wavelength-sensitive opsins not being expressed before first feeding. Also, early opsin expression in the retina was located centrally, expanding dorsally and ventrally as eye development progressed, with rod opsin being the dominant visual opsin post-hatching. Modeling by spectral tuning analysis and atomistic molecular simulation, predicted the greatest variation in the spectral peak of absorbance to be within the Rh2 class, with a ∼40 nm difference in λ max values between the four medium-wavelength-sensitive photopigments. Overall, it appears that opsin duplication and expression, and their respective spectral tuning profiles, evolved to maximize specialist color vision throughout an anadromous lifecycle, with some visual opsin genes being lost to tailor marine-based vision.more » « less
-
In U.S. Pacific Northwest coho salmon (Oncorhynchus kisutch), stormwater exposure annually causes unexplained acute mortality when adult salmon migrate to urban creeks to reproduce. By investigating this phenomenon, we identified a highly toxic quinone transformation product ofN-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD), a globally ubiquitous tire rubber antioxidant. Retrospective analysis of representative roadway runoff and stormwater-affected creeks of the U.S. West Coast indicated widespread occurrence of 6PPD-quinone (<0.3 to 19 micrograms per liter) at toxic concentrations (median lethal concentration of 0.8 ± 0.16 micrograms per liter). These results reveal unanticipated risks of 6PPD antioxidants to an aquatic species and imply toxicological relevance for dissipated tire rubber residues.more » « less
-
ABSTRACT Maladapted immigrants may reduce wild population productivity and resilience, depending on the degree of fitness mismatch between dispersers and locals. Thus, domesticated individuals escaping into wild populations is a key conservation concern. In Prince William Sound, Alaska, over 700 million pink salmon (Oncorhynchus gorbuscha) are released annually from hatcheries, providing a natural experiment to characterize the mechanisms underlying impacts to wild populations. Using a dataset of > 200,000 pink salmon sampled from 30 populations over 8 years, we detected significant body size and phenological differences between hatchery‐ and wild‐origin spawners, likely driven by competitive differences during maturation and broodstock selection practices. Variation in traits was reduced in hatchery fish, raising biodiversity concerns. However, phenotypic traits of immigrants and locals were positively correlated. We discuss possible mechanisms that may explain this pattern and how it may reduce adverse impacts associated with reduced trait variation. This study suggests that domestication impacts are likely widespread, but local adaptation may be maintained by phenotypic sorting.more » « less
An official website of the United States government

