The goal of this short document is to explain why recent developments in the Internet's infrastructure are problematic. As context, we note that the Internet was originally designed to provide a simple universal service - global end-to-end packet delivery - on which a wide variety of end-user applications could be built. The early Internet supported this packet-delivery service via an interconnected collection of commercial Internet Service Providers (ISPs) that we will refer to collectively as the public Internet. The Internet has fulfilled its packet-delivery mission far beyond all expectations and is now the dominant global communications infrastructure. By providing a level playing field on which new applications could be deployed, the Internet has enabled a degree of innovation that no one could have foreseen. To improve performance for some common applications, enhancements such as caching (as in content-delivery networks) have been gradually added to the Internet. The resulting performance improvements are so significant that such enhancements are now effectively necessary to meet current content delivery demands. Despite these tangible benefits, this document argues that the way these enhancements are currently deployed seriously undermines the sustainability of the public Internet and could lead to an Internet infrastructure that reaches fewer people and is largely concentrated among only a few large-scale providers. We wrote this document because we fear that these developments are now decidedly tipping the Internet's playing field towards those who can deploy these enhancements at massive scale, which in turn will limit the degree to which the future Internet can support unfettered innovation. This document begins by explaining our concerns but goes on to articulate how this unfortunate fate can be avoided. To provide more depth for those who seek it, we provide a separate addendum with further detail.
more »
« less
Understanding Responsible Computing via Project Management for Sustainability
Everyone acknowledges the importance of responsible computing but practical advice is hard to come by. Important Internet applications are ways to accomplish business processes. We investigate how they can be geared to support responsibility as illustrated via sustainability. Sustainability is not only urgent and essential but also challenging due to engagement with human and societal concerns, diverse success criteria, and extended temporal and spatial scope. This article introduces a new framework for developing responsible Internet applications that synthesizes the perspectives of Theory of Change, Participatory System Mapping, and Computational Sociotechnical Systems.
more »
« less
- Award ID(s):
- 2116751
- PAR ID:
- 10538314
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Internet Computing
- Volume:
- 27
- Issue:
- 6
- ISSN:
- 1089-7801
- Page Range / eLocation ID:
- 37 to 42
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The objective of this study is to provide an overview of Blockchain technology and Industry 4.0 for advancing supply chains towards sustainability. First, extracted from the existing literature, we evaluate the capabilities of Industry 4.0 for sustainability under three main topics of (1) Internet of things (IoT)-enabled energy management in smart factories; (2) smart logistics and transportation; and (3) smart business models. We expand beyond Industry 4.0 with unfolding the capabilities that Blockchain offers for increasing sustainability, under four main areas: (1) design of incentive mechanisms and tokenization to promote consumer green behavior; (2) enhance visibility across the entire product lifecycle; (3) increase systems efficiency while decreasing development and operational costs; and (4) foster sustainability monitoring and reporting performance across supply chain networks. Furthermore, Blockchain technology capabilities for contributing to social and environmental sustainability, research gaps, adversary effects of Blockchain, and future research directions are discussed.more » « less
-
Abstract Recent advancements have significantly enhanced the capabilities for in-space servicing, assembly, and manufacturing (ISAM), to develop infrastructure in orbit and on the surface of celestial bodies. This progress is a departure from the traditional sustainability paradigm focused solely on Earth, highlighting the urgent need to define and operationalize the concept of “space sustainability” along with the development of an evaluation framework. The expansion of human activity into space, particularly in low-earth orbit, cis-lunar space, and beyond, underscores the critical importance of considering sustainability implications. Leveraging space resources offers economic growth and sustainable development opportunities, while reducing pressure on Earth’s ecosystems. This paradigm shift requires responsible and ethical utilization of space resources. A space sustainability assessment framework is essential for guiding ISAM capabilities, operations, missions, standards, and policies. This paper introduces an initial framework encompassing (1) pollution, (2) resource depletion, (3) landscape alteration, and (4) space environmental justice, with potential metrics (resources use and emissions, midpoint, and endpoint indicators) to measure impacts in the four domains.more » « less
-
The internet of Things (IoT) refers to a network of physical objects that are equipped with sensors, software, and other technologies in order to communicate with other devices and systems over the internet. IoT has emerged as one of the most important technologies of this century over the past few years. To ensure IoT systems' sustainability and security over the long term, several researchers lately motivated the need to incorporate the recently proposed zero trust (ZT) cybersecurity paradigm when designing and implementing access control models for IoT systems. This poster proposes a hybrid access control approach incorporating traditional and deep learning-based authorization techniques toward score-based ZT authorization for IoT systems.more » « less
-
null (Ed.)The objective is to provide an interpretive reading of the literature in resource scarcity and sustainability theory from the nineteenth century to the present time, focusing on shifts that have occurred in problem definition, conceptual framing, research tools applied, findings, and their implications. My reading shows, as one would expect, that the discourse has become more technical and the analysis more sophisticated; special cases have been incorporated into the mainstream of theory; and, where relevant, dynamic formulations have largely supplanted static analysis. However, that is barely scratching the surface. Here, I focus on more fundamental shifts. Exhaustible and renewable resource analyses were incorporated into the mainstream theory of financial and capital markets. Parallels between the resources and environmental spheres were discovered: market failure concepts, fundamental to environmental policy, found applications in the resources sector (e.g., fisheries), and renewable resource management concepts and approaches (e.g., waste assimilation capacity) were adopted in environmental policy. To motivate sustainability theory and assessment, there has been a foundational problem shift from restraining human greed to dealing with risk viewed as chance of harm, and a newfound willingness to look beyond stochastic risk to uncertainty, ambiguity, and gross ignorance. Newtonian dynamics, which seeks a stable equilibrium following a shock, gave way to a new dynamics of complexity that valued resilience in the face of shocks, warned of potential for regime shifts, and focused on the possibility of systemic collapse and recovery, perhaps incomplete. New concepts of sustainability (a safe minimum standard of conservation, the precautionary principle, and planetary boundaries) emerged, along with hybrid approaches such as WS-plus which treats weak sustainability (WS) as the default but may impose strong sustainability restrictions on a few essential but threatened resources. The strong sustainability objective has evolved from maintaining baseline flows of resource services to safety defined as minimizing the chance of irreversible collapse. New tools for management and policy (sustainability indicators and downscaled planetary boundaries) have proliferated, and still struggle to keep up with the emerging understanding of complex systems.more » « less