Abstract We present ultraviolet to infrared observations of the extraordinary Type IIn supernova 2023zkd (SN 2023zkd). Photometrically, it exhibits persistent and luminous precursor emission spanning ∼4 yr preceding discovery (Mr ≈ −15 mag, 1500 days in the observer frame), followed by a secondary stage of gradual brightening in its final year. Post-discovery, it exhibits two photometric peaks of comparable brightness (Mr ≲ −18.7 mag andMr ≈ −18.4 mag, respectively) separated by 240 days. Spectroscopically, SN 2023zkd exhibits highly asymmetric and multicomponent Balmer and HeIprofiles that we attribute to ejecta interaction with fast-moving (1000–2000 km s−1) He-rich polar material and slow-moving (∼400 km s−1) equatorially distributed H-rich material. HeIIfeatures also appear during the second light curve peak and evolve rapidly. Shock-driven models fit to the multiband photometry suggest that the event is powered by interaction with ∼5–6M⊙of CSM, with 2–3M⊙associated with each light curve peak, expelled during mass-loss episodes ∼3–4 yr and ∼1–2 yr prior to explosion. The observed precursor emission, combined with the extreme mass-loss rates required to power each light curve peak, favors either super-Eddington accretion onto a black hole or multiple long-lived eruptions from a massive star to luminosities that have not been previously observed. We consider multiple progenitor scenarios for SN 2023zkd, and find that the brightening optical precursor and inferred explosion properties are most consistent with a massive (MZAMS≥ 30M⊙) and partially stripped He star undergoing an instability-induced merger with a black hole companion.
more »
« less
Multiple Peaks and a Long Precursor in the Type IIn Supernova 2021qqp: An Energetic Explosion in a Complex Circumstellar Environment
Abstract We present optical photometry and spectroscopy of the Type IIn supernova (SN) 2021qqp. Its unusual light curve is marked by a long precursor for ≈300 days, a rapid increase in brightness for ≈60 days, and then a sharp increase of ≈1.6 mag in only a few days to a first peak ofMr≈ −19.5 mag. The light curve then declines rapidly until it rebrightens to a second distinct peak ofMr≈ −17.3 mag centered at ≈335 days after the first peak. The spectra are dominated by Balmer lines with a complex morphology, including a narrow component with a width of ≈1300 km s−1(first peak) and ≈2500 km s−1(second peak) that we associate with the circumstellar medium (CSM) and a P Cygni component with an absorption velocity of ≈8500 km s−1(first peak) and ≈5600 km s−1(second peak) that we associate with the SN–CSM interaction shell. Using the luminosity and velocity evolution, we construct a flexible analytical model, finding two significant mass-loss episodes with peak mass loss rates of ≈10 and ≈5M⊙yr−1about 0.8 and 2 yr before explosion, respectively, with a total CSM mass of ≈2–4M⊙. We show that the most recent mass-loss episode could explain the precursor for the year preceding the explosion. The SN ejecta mass is constrained to be ≈5–30M⊙for an explosion energy of ≈(3–10) × 1051erg. We discuss eruptive massive stars (luminous blue variable, pulsational pair instability) and an extreme stellar merger with a compact object as possible progenitor channels.
more »
« less
- PAR ID:
- 10538373
- Publisher / Repository:
- AAS
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 964
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 181
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present high-cadence photometric and spectroscopic observations of supernova (SN) 2024ggi, a Type II SN with flash spectroscopy features, which exploded in the nearby galaxy NGC 3621 at ∼7 Mpc. The light-curve evolution over the first 30 hr can be fit by two power-law indices with a break after 22 hr, rising fromMV≈ −12.95 mag at +0.66 day toMV≈ −17.91 mag after 7 days. In addition, the densely sampled color curve shows a strong blueward evolution over the first few days and then behaves as a normal SN II with a redward evolution as the ejecta cool. Such deviations could be due to interaction with circumstellar material (CSM). Early high- and low-resolution spectra clearly show high-ionization flash features from the first spectrum to +3.42 days after the explosion. From the high-resolution spectra, we calculate the CSM velocity to be 37 ± 4 km s−1. We also see the line strength evolve rapidly from 1.22 to 1.49 days in the earliest high-resolution spectra. Comparison of the low-resolution spectra with CMFGEN models suggests that the pre-explosion mass-loss rate of SN 2024ggi falls in the range of 10−3–10−2M☉yr−1, which is similar to that derived for SN 2023ixf. However, the rapid temporal evolution of the narrow lines in the spectra of SN 2024ggi (RCSM∼ 2.7 × 1014cm) could indicate a smaller spatial extent of the CSM than in SN 2023ixf (RCSM∼ 5.4 × 1014cm), which in turn implies a lower total CSM mass for SN 2024ggi.more » « less
-
Abstract We present a comprehensive analysis of the photometric and spectroscopic evolution of SN 2021foa, unique among the class of transitional supernovae for repeatedly changing its spectroscopic appearance from hydrogen-to-helium-to-hydrogen dominated (IIn-to-Ibn-to-IIn) within 50 days past peak brightness. The spectra exhibit multiple narrow (≈300–600 km s−1) absorption lines of hydrogen, helium, calcium, and iron together with broad helium emission lines with a full width at half-maximum (FWHM) of ∼6000 km s−1. For a steady, wind mass-loss regime, light-curve modeling results in an ejecta mass of ∼8M⊙and circumstellar material (CSM) mass below 1M⊙, and an ejecta velocity consistent with the FWHM of the broad helium lines. We obtain a mass-loss rate of ≈2M⊙yr−1. This mass-loss rate is 3 orders of magnitude larger than derived for normal Type II supernovae. We estimate that the bulk of the CSM of SN 2021foa must have been expelled within half a year, about 12 yr ago. Our analysis suggests that SN 2021foa had a helium-rich ejecta that swept up a dense shell of hydrogen-rich CSM shortly after explosion. At about 60 days past peak brightness, the photosphere recedes through the dense ejecta-CSM region, occulting much of the redshifted emission of the hydrogen and helium lines, which results in an observed blueshift (∼−3000 km s−1). Strong mass-loss activity prior to explosion, such as those seen in SN 2009ip-like objects and SN 2021foa as precursor emission, are the likely origin of a complex, multiple-shell CSM close to the progenitor star.more » « less
-
Abstract We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak (MV≈ − 18.2 mag) and plateau (MV≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day−1. During the rising phase,U−Vcolor shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both theU−Vcolor and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 1014cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0M⊙yr−1in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1M⊙yr−1in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1M⊙of the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models.more » « less
-
Abstract We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time (flash) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of Hi, Hei/ii, Civ, and Niii/iv/vwith a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density atr≳ 1015cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g.,Mu= −18.6 mag,Mg= −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer codeCMFGENand the radiation-hydrodynamics codeHERACLESsuggests dense, solar-metallicity CSM confined tor= (0.5–1) × 1015cm, and a progenitor mass-loss rate of yr−1. For the assumed progenitor wind velocity ofvw= 50 km s−1, this corresponds to enhanced mass loss (i.e.,superwindphase) during the last ∼3–6 yr before explosion.more » « less
An official website of the United States government

