Recent advancements in 3D printing technology have expanded its application to manufacturing pressure sensors. By harnessing the cost‐effectiveness, streamlined processes, and design flexibility of 3D printing, sensor fabrication can be customized to meet specific performance needs. Thus far, 3D printing in pressure sensor development has been primarily limited to creating molds for transferring patterns onto flexible substrates, restricting both material selection and sensor performance. To fully unlock the potential of 3D printing in advanced pressure sensor fabrication, it is crucial to establish effective design rules focused on enhancing the figure of merit performance. This study introduces a universal design strategy aimed at maintaining high sensitivity across a wide pressure range—a challenging feat, as sensitivity significantly decreases at higher pressures. Our approach centers on engineering the deformability of 3D‐printed structures, achieving a linear increase in contact area between sensor patterns and electrodes without reaching saturation. Sensors designed with high elongation and low stiffness exhibit consistent sensitivity of 162.5 kPa⁻¹ across a broad pressure range (0.05–300 kPa). Mechanistic investigations through finite element analysis confirm that engineered deformability is key to achieving this enhanced linear response, offering robust sensing capabilities for demanding applications such as deep‐sea and space exploration.
A new manufacturing paradigm is showcased to exclude conventional mold‐dependent manufacturing of pressure sensors, which typically requires a series of complex and expensive patterning processes. This mold‐free manufacturing leverages high‐resolution 3D‐printed multiscale microstructures as the substrate and a gas‐phase conformal polymer coating technique to complete the mold‐free sensing platform. The array of dome and spike structures with a controlled spike density of a 3D‐printed substrate ensures a large contact surface with pressures applied and extended linearity in a wider pressure range. For uniform coating of sensing elements on the microstructured surface, oxidative chemical vapor deposition is employed to deposit a highly conformal and conductive sensing element, poly(3,4‐ethylenedioxythiophene) at low temperatures (<60 °C). The fabricated pressure sensor reacts sensitively to various ranges of pressures (up to 185 kPa−1) depending on the density of the multiscale features and shows an ultrafast response time (≈36 µs). The mechanism investigations through the finite element analysis identify the effect of the multiscale structure on the figure‐of‐merit sensing performance. These unique findings are expected to be of significant relevance to technology that requires higher sensing capability, scalability, and facile adjustment of a sensor geometry in a cost‐effective manufacturing manner.
more » « less- Award ID(s):
- 2207302
- PAR ID:
- 10538388
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 35
- Issue:
- 41
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Carbas, Ricardo JC (Ed.)Low fiber-direction compressive strength is a well-recognized weakness of carbon fiber-reinforced polymer (CFRP) composites. When a CFRP is produced using 3D printing, the compressive strength is further degraded. To solve this issue, in this paper, a novel magnetic compaction force-assisted additive manufacturing (MCFA-AM) method is used to print CFRP laminates reinforced with carbon nanofiber (CNF) z-threads (i.e., ZT-CFRP). MCFA-AM utilizes a magnetic force to simultaneously levitate, deposit, and compact fast-curing CFRP prepregs in free space and quickly solidifies the CFRP laminate part without any mold nor supporting substrate plate; it effectively reduces the voids. The longitudinal compressive test was performed on five different sample types. ZT-CFRP/MCFA-AM samples were printed under two different magnetic compaction rolling pressures, i.e., 0.5 bar and 0.78 bar. Compared with the longitudinal compressive strength of a typical CFRP manufactured by the traditional out-of-autoclave–vacuum-bag-only (OOA-VBO) molding process at the steady-state pressure of 0.82 bar, the ZT-CFRP/MCFA-AM samples showed either comparable results (by −1.00% difference) or enhanced results (+7.42% improvement) by using 0.5 bar or 0.78 bar magnetic rolling pressures, respectively.more » « less
-
Abstract The inherent fog collection mechanism used by the cactus gives inspirations for constructing energy‐efficient and environmentally friendly water collection devices. However, the related studies meet the bottleneck on improving the collection efficiency because it is hard to replicate real natural clusters of branched spines by traditional manufacturing methods. The immersed surface accumulation based 3D printing provides a tool to reproduce branched cactus spines, enabling the study of water collection of artificial spines with various designs. Here, a cactus‐inspired surface decorated with multiple directional artificial spines for highly efficient water collection and transportation is presented. The nanoscale hydrophobic coating is sputtered on the surface of the 3D‐printed spines to accelerate the water growth rate. The results show that the hexagonally arranged clusters enhance the moisture airflow around 3D‐printed spines, and the printed spines with 10° tip angle and hydrophobic coating achieve the highest weight gain of 2 mg min−1mm−3. This study opens intriguing perspectives for designing next‐generation structural materials with the special spatial distribution of biomimetic features to achieve energy free and highly efficient water collection. The results reported here are believed to be helpful for the development of environmental friendly water collection, water transportation, and water separation devices.
-
Abstract This study introduces a high‐throughput, large‐scale manufacturing method that uses aerosol jet 3D printing for a fully printed stretchable, wireless electronics. A comprehensive study of nanoink preparation and parameter optimization enables a low‐profile, multilayer printing of a high‐performance, capacitance flow sensor. The core printing process involves direct, microstructured patterning of biocompatible silver nanoparticles and polyimide. The optimized fabrication approach allows for transfer of highly conductive, patterned silver nanoparticle films to a soft elastomeric substrate. Stretchable mechanics modeling and seamless integration with an implantable stent display a highly stretchable and flexible sensor, deployable by a catheter for extremely low‐profile, conformal insertion in a blood vessel. Optimization of a transient, wireless inductive coupling method allows for wireless detection of biomimetic cerebral aneurysm hemodynamics with the maximum readout distance of 6 cm through meat. In vitro demonstrations include wireless monitoring of flow rates (0.05–1 m s−1) in highly contoured and narrow human neurovascular models. Collectively, this work shows the potential of the printed biosystem to offer a high throughput, additive manufacturing of stretchable electronics with advances toward batteryless, real‐time wireless monitoring of cerebral aneurysm hemodynamics.
-
Abstract Manufacturing of printed electronics relies on the deposition of conductive liquid inks, typically onto polymeric or paper substrates. Among available conductive fillers for use in electronic inks, carbon nanotubes (CNTs) have high conductivity, low density, processability at low temperatures, and intrinsic mechanical flexibility. However, the electrical conductivity of printed CNT structures has been limited by CNT quality and concentration, and by the need for nonconductive modifiers to make the ink stable and extrudable. This study introduces a polymer‐free, printable aqueous CNT ink, and, via an ambient direct‐write printing process, presents the relationships between printing resolution, ink rheology, and ink‐substrate interactions. A model is constructed to predict printed feature sizes on impermeable substrates based on Wenzel wetting. Printed lines have conductivity up to 10 000 S m−1. The lines are flexible, with <5% change in DC resistance after 1000 bending cycles, and <3% change in DC resistance with a bending radius down to 1 mm. Demonstrations focus on i) conformality, via printing CNTs onto stickers that can be applied to curved surfaces, ii) interactivity using a CNT‐based button printed onto folded paper structure, and iii) capacitive sensing of liquid wicking into the substrate itself. Facile integration of surface mount components on printed circuits is enabled by the intrinsic adhesion of the wet ink.