Abstract The thermal conductivity of boron arsenide (BAs) is believed to be influenced by phonon scattering selection rules due to its special phonon dispersion. Compression of BAs leads to significant changes in phonon dispersion, which allows for a test of first principles theories for how phonon dispersion affects three‐ and four‐phonon scattering rates. This study reports the thermal conductivity of BAs from 0 to 30 GPa. Thermal conductivity vs. pressure of BAs is measured by time‐domain thermoreflectance with a diamond anvil cell. In stark contrast to what is typical for nonmetallic crystals, BAs is observed to have a pressure independent thermal conductivity below 30 GPa. The thermal conductivity of nonmetallic crystals typically increases upon compression. The unusual pressure independence of BAs's thermal conductivity shows the important relationship between phonon dispersion properties and three‐ and four‐phonon scattering rates. 
                        more » 
                        « less   
                    
                            
                            Sampling-accelerated prediction of phonon scattering rates for converged thermal conductivity and radiative properties
                        
                    
    
            Abstract The prediction of thermal conductivity and radiative properties is crucial. However, computing phonon scattering, especially for four-phonon scattering, could be prohibitively expensive, and the thermal conductivity for silicon after considering four-phonon scattering is significantly under-predicted and not converged in the literature. Here we propose a method to estimate scattering rates from a small sample of scattering processes using maximum likelihood estimation. The calculation of scattering rates and associated thermal conductivity and radiative properties are dramatically accelerated by three to four orders of magnitude. This allows us to use an unprecedentedq-mesh (discretized grid in the reciprocal space) of 32 × 32 × 32 for calculating four-phonon scattering of silicon and achieve a converged thermal conductivity value that agrees much better with experiments. The accuracy and efficiency of our approach make it ideal for the high-throughput screening of materials for thermal and optical applications. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10538456
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- npj Computational Materials
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2057-3960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Nanocrystalline silicon can have unique thermal transport and mechanical properties governed by its constituent grain microstructure. Here, we use phonon ray-tracing and molecular dynamics simulations to demonstrate the largely tunable thermomechanical behaviors with varying grain sizes (a0) and aspect ratios (ξ). Our work shows that, by selectively increasing the grain size along the heat transfer direction while keeping the grain area constant, the in-plane lattice thermal conductivity (kx) increases more significantly than the cross-plane lattice thermal conductivity (ky) due to anisotropic phonon–grain boundary scattering. While kx generally increases with increasing ξ, a critical value exists for ξ at which kx reaches its maximum. Beyond this transition point, further increases in ξ result in a decrease in kx due to substantial scattering of low-frequency phonons with anisotropic grain boundaries. Moreover, we observe reductions in the elastic and shear modulus with decreasing grain size, and this lattice softening leads to significant reductions in phonon group velocity and thermal conductivity. By considering both thermal and mechanical size effects, we identify two distinct regimes of thermal transport, in which anisotropic phonon–grain boundary scattering becomes more appreciable at low temperatures and lattice softening becomes more pronounced at high temperatures. Through phonon spectral analysis, we attribute the significant thermal conductivity anisotropy in nanograined silicon to grain boundary scattering of low-frequency phonons and the softening-driven thermal conductivity reduction to Umklapp scattering of high-frequency phonons. These findings offer insights into the manipulation of thermomechanical properties of nanocrystalline silicon via microstructure engineering, carrying profound implications for the development of future nanomaterials.more » « less
- 
            Abstract Lattice thermal conductivity is important for many applications, but experimental measurements or first principles calculations including three-phonon and four-phonon scattering are expensive or even unaffordable. Machine learning approaches that can achieve similar accuracy have been a long-standing open question. Despite recent progress, machine learning models using structural information as descriptors fall short of experimental or first principles accuracy. This study presents a machine learning approach that predicts phonon scattering rates and thermal conductivity with experimental and first principles accuracy. The success of our approach is enabled by mitigating computational challenges associated with the high skewness of phonon scattering rates and their complex contributions to the total thermal resistance. Transfer learning between different orders of phonon scattering can further improve the model performance. Our surrogates offer up to two orders of magnitude acceleration compared to first principles calculations and would enable large-scale thermal transport informatics.more » « less
- 
            Despite its importance, a sophisticated theoretical study of thermal conductivity in bulk h-BN has been lacking to date. In this study, we predict thermal conductivity in bulk h-BN crystals using first-principles predictions and the Boltzmann transport equation. We consider three-phonon (3ph) scattering, four-phonon (4ph) scattering, and phonon renormalization. Our predicted thermal conductivity is 363 and 4.88 W/(m K) for the in-plane and out-of-plane directions at room temperature, respectively. Further analysis reveals that 4ph scattering reduces thermal conductivity, while phonon renormalization weakens phonon anharmonicity and increases thermal conductivity. Eventually, the in-plane and out-of-plane thermal conductivities show intriguing ∼T−0.627 and ∼T−0.568 dependencies, respectively, far deviating from the traditional 1/T relation.more » « less
- 
            Abstract Nanosized perovskite ferroelectrics are widely employed in several electromechanical, photonics, and thermoelectric applications. Scaling of ferroelectric materials entails a severe reduction in the lattice (phonon) thermal conductivity, particularly at sub‐100 nm length scales. Such thermal conductivity reduction can be accurately predicted using the information of phonon mean free path (MFP) distribution. The current understanding of phonon MFP distribution in perovskite ferroelectrics is still inconclusive despite the critical thermal management implications. Here, high‐quality single‐crystalline barium titanate (BTO) thin films, a representative perovskite ferroelectric material, are grown at several thicknesses. Using experimental thermal conductivity measurements and first‐principles based modeling (including four‐phonon scattering), the phonon MFP distribution is determined in BTO. The simulation results agree with the measured thickness‐dependent thermal conductivity. The results show that the phonons with sub‐100 nm MFP dominate the thermal transport in BTO, and phonons with MFP exceeding 10 nm contribute ≈35% to the total thermal conductivity, in significant contrast to previously published experimental results. The experimentally validated phonon MFP distribution is consistent with the theoretical predictions of other complex crystals with strong anharmonicity. This work paves the way for thermal management in nanostructured and ferroelectric‐domain‐engineered systems for oxide perovskite‐based functional materials.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    