Abstract The Hercules ultrafaint dwarf galaxy (UFD) has long been hypothesized to be tidally disrupting, yet no conclusive evidence has been found for tidal disruption owing partly to difficulties in identifying Hercules member stars. In this work, we present a homogeneous reanalysis of new and existing observations of Hercules, including the detection of a new potential member star located ∼1° (∼1.7 kpc) west of the center of the system. In addition to measuring the line-of-sight velocity gradient, we compare predictions from dynamical models of stream formation to these observations. We report an updated velocity dispersion measurement based on 28 stars, km s−1, which is significantly lower than previous measurements. We find that the line-of-sight velocity gradient is km s−1kpc along the major axis of Hercules, consistent with zero within 1σ. Our dynamical models of stream formation, on the other hand, can reproduce the morphology of the Hercules UFD, specifically the misalignment between the elongation and the orbital motion direction. Additionally, these dynamical models indicate that any radial velocity gradient from tidal disruption would be too small, km s−1kpc, to be detectable with current sample sizes. Combined with our analysis of the tidal radius evolution of the system as a function of its orbital phase, we argue that it is likely that Hercules is indeed currently undergoing tidal disruption in its extended stellar halo with a line-of-sight velocity gradient too small to be detected with current observational data sets.
more »
« less
Airfall volume of the 15 January 2022 eruption of Hunga volcano estimated from ocean color changes
Abstract On 15 January 2022, Hunga volcano erupted, creating an extensive and high-reaching umbrella cloud over the open ocean, hindering traditional isopach mapping and fallout volume estimation. In MODIS satellite imagery, ocean surface water was discolored around Hunga following the eruption, which we attribute to ash fallout from the umbrella cloud. By relating intensity of ocean discoloration to fall deposit thicknesses in the Kingdom of Tonga, we develop a methodology for estimating airfall volume over the open ocean. Ash thickness measurements from 41 locations are used to fit a linear relationship between ash thickness and ocean reflectance. This produces a minimum airfall volume estimate of$${1.8}_{-0.4}^{+0.3}$$ km3. The whole eruption produced > 6.3 km3of uncompacted pyroclastic material on the seafloor and a caldera volume change of 6 km3DRE. Our fall estimates are consistent with the interpretation that most of the seafloor deposits were emplaced by gravity currents rather than fall deposits. Our proposed method does not account for the largest grain sizes, so is thus a minimum estimate. However, this new ocean-discoloration method provides an airfall volume estimate consistent with other independent measures of the plume and is thus effective for rapidly estimating fallout volumes in future volcanic eruptions over oceans.
more »
« less
- Award ID(s):
- 2042173
- PAR ID:
- 10538592
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Bulletin of Volcanology
- Volume:
- 86
- Issue:
- 6
- ISSN:
- 1432-0819
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report the discovery of three faint and ultrafaint dwarf galaxies—Sculptor A, Sculptor B, and Sculptor C—in the direction of NGC 300 (D= 2.0 Mpc), a Large Magellanic Cloud–mass galaxy. Deep ground-based imaging with Gemini/GMOS resolves all three dwarf galaxies into stars, each displaying a red giant branch indicative of an old, metal-poor stellar population. No young stars or Higas are apparent, and the lack of a GALEX UV detection suggests that all three systems are quenched. Sculptor C (D= 2.04 Mpc;MV= −9.1 ± 0.1 mag orLV= (3.7 ) × 105L⊙) is consistent with being a satellite of NGC 300. Sculptor A (D= 1.35 Mpc;MV= −6.9 ± 0.3 mag orLV= (5 ) × 104L⊙) is likely in the foreground of NGC 300 and at the extreme edge of the Local Group, analogous to the recently discovered ultrafaint Tucana B in terms of its physical properties and environment. Sculptor B (D= 2.48 Mpc;MV= −8.1 ± 0.3 mag orLV= (1.5 ) × 105L⊙) is likely in the background, but future distance measurements are necessary to solidify this statement. It is also of interest due to its quiescent state and low stellar mass. Both Sculptor A and B are ≳2–4rvirfrom NGC 300 itself. The discovery of three dwarf galaxies in isolated or low-density environments offers an opportunity to study the varying effects of ram-pressure stripping, reionization, and internal feedback in influencing the star formation history of the faintest stellar systems.more » « less
-
Abstract We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete toMV∼ (−7, −10) mag for galaxies atD= (0.3, 2.0) Mpc. We find no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of , a potential satellite of the Local Volume galaxy NGC 55, separated by 47′ (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absoluteV-band magnitude of and an azimuthally averaged physical half-light radius of , making this one of the lowest surface brightness galaxies ever found with . This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host.more » « less
-
A<sc>bstract</sc> We present a study of$$ {\Xi}_c^0\to {\Xi}^0{\pi}^0 $$ ,$$ {\Xi}_c^0\to {\Xi}^0\eta $$ , and$$ {\Xi}_c^0\to {\Xi}^0{\eta}^{\prime } $$ decays using the Belle and Belle II data samples, which have integrated luminosities of 980 fb−1and 426 fb−1, respectively. We measure the following relative branching fractions$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.48\pm 0.02\left(\textrm{stat}\right)\pm 0.03\left(\textrm{syst}\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0\eta \right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.11\pm 0.01\left(\textrm{stat}\right)\pm 0.01\left(\textrm{syst}\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\eta}^{\prime}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.08\pm 0.02\left(\textrm{stat}\right)\pm 0.01\left(\textrm{syst}\right)\end{array}} $$ for the first time, where the uncertainties are statistical (stat) and systematic (syst). By multiplying by the branching fraction of the normalization mode,$$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ , we obtain the following absolute branching fraction results$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)=\left(6.9\pm 0.3\left(\textrm{stat}\right)\pm 0.5\left(\textrm{syst}\right)\pm 1.3\left(\operatorname{norm}\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0\eta \right)=\left(1.6\pm 0.2\left(\textrm{stat}\right)\pm 0.2\left(\textrm{syst}\right)\pm 0.3\left(\operatorname{norm}\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\varXi}_c^0\to {\Xi}^0{\eta}^{\prime}\right)=\left(1.2\pm 0.3\left(\textrm{stat}\right)\pm 0.1\left(\textrm{syst}\right)\pm 0.2\left(\operatorname{norm}\right)\right)\times {10}^{-3},\end{array}} $$ where the third uncertainties are from$$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ . The asymmetry parameter for$$ {\Xi}_c^0\to {\Xi}^0{\pi}^0 $$ is measured to be$$ \alpha \left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)=-0.90\pm 0.15\left(\textrm{stat}\right)\pm 0.23\left(\textrm{syst}\right) $$ .more » « less
-
Abstract Lifetimes of higher-lying states ($$2_2^+$$ and$$4_1^+$$ ) in$$^{16}$$ C have been measured, employing the Gammasphere and Microball detector arrays, as key observables to test and refine ab initio calculations based on interactions developed within chiral Effective Field Theory. The presented experimental constraints to these lifetimes of$$\tau ({2_2^+}) = [\,244, 446]\,~\textrm{fs}$$ and$$\tau ({4_1^+}) = [\,1.8, 4]\,~\textrm{ps}$$ , combined with previous results on the lifetime of the$$2_1^+$$ state of$$^{16}$$ C, provide a rather complete set of key observables to benchmark the theoretical developments. We present No-Core Shell-Model calculations using state-of-the-art chiral 2- (NN) and 3-nucleon (3N) interactions at next-to-next-to-next-to-leading order for both the NN and the 3N contributions and a generalized natural-orbital basis (instead of the conventional harmonic-oscillator single-particle basis) which reproduce, for the first time, the experimental findings remarkably well. The level of agreement of the new calculations as compared to the CD-Bonn meson-exchange NN interaction is notable and presents a critical benchmark for theory.more » « less
An official website of the United States government

