skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mutation Coverage is not Strongly Correlated with Mutation Coverage
Several metrics have been proposed in the past to quantify the effectiveness of a test suite; they are usually based on some measure of coverage because it is sensible to quantify the effectiveness of a test suite by the extent to which it exercises (covers) various syntactic features of the program under test. Though no coverage metric has emerged as the gold standard of test suite effectiveness, mutation coverage is widely perceived as a reliable measure of test suite effectiveness because the ability of a test suite to detect program mutations can be used as an indication of its ability to detect actual faults. In this paper we aim to challenge the superiority of mutation coverage, by showing that the same test suite may have vastly different values of mutation coverage depending on the mutation operators that are used in the estimation.  more » « less
Award ID(s):
2043104
PAR ID:
10538634
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400705885
Page Range / eLocation ID:
1 to 11
Subject(s) / Keyword(s):
test suite effectiveness mutation coverage mutation operators mutant generation policy.
Format(s):
Medium: X
Location:
Lisbon Portugal
Sponsoring Org:
National Science Foundation
More Like this
  1. Ghosh, Sudipto; Troubitsyna, Elena; Chen, Zhenyu (Ed.)
    When we quantify the effectiveness of a test suite by its mutation coverage, we are in fact equating test suite effectiveness with fault detection: to the extent that mutations are faithful proxies of actual faults, it is sensible to consider that the effectiveness of a test suite to kill mutants reflects its ability to detect faults. But there is another way to measure the effectiveness of a test suite: by its ability to expose the failures of an incorrect program. The relationship between failures and faults is tenuous at best: a fault is the adjudged or hypothesized cause of a failure. The same failure may be attributed to more than one fault. This raises the question: what is the relationship between detecting faults and exposing failures. In this paper, we discuss an empirical experiment in which we explore this relationship. 
    more » « less
  2. While the existing methods for testing XACML policies have varying levels of effectiveness, none of them can reveal the majority of policy faults. The undisclosed faults may lead to unauthorized access and denial of service. This paper presents an approach to strong mutation testing of XACML policies that automatically generates tests from the mutants of a given policy. Such mutants represent the targeted faults that may appear in the policy. In this approach, we first compose the strong mutation constraints that capture the semantic difference between each mutant and its original policy. Then, we use a constraint solver to derive an access request (i.e., test). The test suite generated from all the mutants of a policy can achieve a perfect mutation score, thus uncover all hypothesized faults or demonstrate their absence. Based on the mutation-based approach, this paper further explores optimal test suite that achieves a perfect mutation score without duplicate tests. To evaluate the proposed approach, our experiments have included all the subject policies in the relevant literature and used a number of new policies. The results demonstrate that: (1) it is scalable to generate a mutation-based test suite to achieve a perfect mutation score, (2) it can be impractical to generate the optimal test suite due to the expensive removal of duplicate tests, (3) different from the results of the existing study, the modified-condition/decision coverage-based method, currently the most effective one, has low mutation scores for several policies. 
    more » « less
  3. Greybox fuzzing and mutation testing are two popular but mostly independent fields of software testing research that have so far had limited overlap. Greybox fuzzing, generally geared towards searching for new bugs, predominantly uses code coverage for selecting inputs to save. Mutation testing is primarily used as a stronger alternative to code coverage in assessing the quality of regression tests; the idea is to evaluate tests for their ability to identify artificially injected faults in the target program. But what if we wanted to use greybox fuzzing to synthesize high-quality regression tests? In this paper, we develop and evaluate Mu2, a Java-based framework for incorporating mutation analysis in the greybox fuzzing loop, with the goal of producing a test-input corpus with a high mutation score. Mu2 makes use of a differential oracle for identifying inputs that exercise interesting program behavior without causing crashes. This paper describes several dynamic optimizations implemented in Mu2 to overcome the high cost of performing mutation analysis with every fuzzer-generated input. These optimizations introduce trade-offs in fuzzing throughput and mutation killing ability, which we evaluate empirically on five real-world Java benchmarks. Overall, variants of Mu2 are able to synthesize test-input corpora with a higher mutation score than state-of-the-art Java fuzzer Zest. 
    more » « less
  4. Mutation testing is a powerful technique for evaluating the quality of test suite which plays a key role in ensuring software quality. The concept of mutation testing has also been widely used in other software engineering studies, e.g., test generation, fault localization, and program repair. During the process of mutation testing, large number of mutants may be generated and then executed against the test suite to examine whether they can be killed, making the process extremely computational expensive. Several techniques have been proposed to speed up this process, including selective, weakened, and predictive mutation testing. Among those techniques, Predictive Mutation Testing (PMT) tries to build a classification model based on an amount of mutant execution records to predict whether coming new mutants would be killed or alive without mutant execution, and can achieve significant mutation cost reduction. In PMT, each mutant is represented as a list of features related to the mutant itself and the test suite, transforming the mutation testing problem to a binary classification problem. In this paper, we perform an extensive study on the effectiveness and efficiency of the promising PMT technique under the cross-project setting using a total 654 real world projects with more than 4 Million mutants. Our work also complements the original PMT work by considering more features and the powerful deep learning models. The experimental results show an average of over 0.85 prediction accuracy on 654 projects using cross validation, demonstrating the effectiveness of PMT. Meanwhile, a clear speed up is also observed with an average of 28.7× compared to traditional mutation testing with 5 threads. In addition, we analyze the importance of different groups of features in classification model, which provides important implications for the future research. 
    more » « less
  5. Mutation testing is widely used in research as a metric for evaluating the quality of test suites. Mutation testing runs the test suite on generated mutants (variants of the code under test), where a test suite kills a mutant if any of the tests fail when run on the mutant. Mutation testing implicitly assumes that tests exhibit deterministic behavior, in terms of their coverage and the outcome of a test (not) killing a certain mutant. Such an assumption does not hold in the presence of flaky tests, whose outcomes can non-deterministically differ even when run on the same code under test. Without reliable test outcomes, mutation testing can result in unreliable results, e.g., in our experiments, mutation scores vary by four percentage points on average between repeated executions, and 9% of mutant-test pairs have an unknown status. Many modern software projects suffer from flaky tests. We propose techniques that manage flakiness throughout the mutation testing process, largely based on strategically re-running tests. We implement our techniques by modifying the open-source mutation testing tool, PIT. Our evaluation on 30 projects shows that our techniques reduce the number of "unknown" (flaky) mutants by 79.4%. 
    more » « less