skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unique marine macrofaunal assemblages in Late Triassic Aotearoa (New Zealand): Insights into diversity patterns, sedimentological controls, and ecological structure
Late Triassic marine macrofaunal assemblages of Aotearoa (New Zealand) exhibit remarkably low diversity, high endemism, and synchronous faunal turnover, and present a complicated array of bottom-water oxygenation indicators. Here we present the results of three bulk sampling campaigns representing marine communities across both the North and South Islands. Four biofacies are present, beginning with Halobia biofacies in the Oretian (lower Norian). The Otamitan (middle Norian) deposits are characterized by two successive biofacies, the Manticula/Hokonuia biofacies and the high diversity brachiopod biofacies of the upper Otamitan. The Warepan (upper Norian) deposits are recognized by the Monotis biofacies. The four biofacies persist across different regions, displaying nearly identical turnover events despite sedimentological variations. However, the bivalve and brachiopod genera exhibit differential shell bed-forming capabilities in different regions. Only the bivalve Monotis was observed in dense shell beds in all three regions sampled. In the northernmost region sampled (including Kiritehere Beach), shell beds are the primary presentation for fossils irrespective of the taxa. We present a comparison of the sedimentological characteristics between shell bed and non-shell bed deposits. Large and/or inflated bivalves are not uncommon, but essentially no burrowing organisms are present. These findings provide crucial insights into the dynamic nature of Triassic marine ecosystems, shedding light on the paleontological diversity patterns and ecological structure of high-latitude systems during hot-house intervals. The persistence of the same biofacies over a broad spatial extent emphasizes the strong influence of regional environmental conditions on the establishment and maintenance of marine communities.  more » « less
Award ID(s):
1654088
PAR ID:
10538661
Author(s) / Creator(s):
;
Publisher / Repository:
Geological Society of America Abstracts with Programs
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Drillholes represent one of the clearest lines of evidence for predation of benthic invertebrates in the fossil record and are frequently used as a primary proxy for predation intensity in the fossil record. Drillholes are abundant in the late Cretaceous and Cenozoic, but their occurrence is patchy in older deposits of the Mesozoic. The inconsistent record of drillholes in pre-Cretaceous deposits of Mesozoic age are problematic for interpretations of predation-prey dynamics and adaptive radiations, and the role of taphonomy or diagenesis have not been resolved. Here we present drilling percentages for assemblages of well-preserved shelly benthic invertebrates (mainly comprised of bivalves and rare gastropods) from the upper Norian (Upper Triassic) in northern Italy in order to compare these values with reported drilling percentages from the Carnian San Cassiano Formation, a rare Triassic sedimentary unit that has yielded many drilled fossils. The Norian fossil deposits reported here are comparable to those of the San Cassiano in terms of depositional environment, preservation, and region, and can be reasonably compared to the drilling percentage of fossils from the San Cassiano. The sampled deposits are collected from marly limestone horizons in the Argillite di Riva di Solto in the Southern Italian Alps, deposited in the Lombardian Basin, and which are interbedded with shale units containing well-preserved fish and arthropod fossils, enabling a correlation between paleoecological structure of the shelly benthos and the demersal-pelagic predator diversity. Over four hundred bivalve fossils yielded a drilling percentage of 0.24% (1/406), which is typical for fossil assemblages of this age, but the single occurrence of a drillhole in this study is in marked contrast to the many drilled specimens reported from the San Cassiano Formation deposit in Italy. The drilled specimen (with complete drillhole) was an infaunal bivalve and no incomplete drillholes were observed in other specimens. Thus, drilling percentages for the Triassic are consistently low, but present, suggesting that drilling predation was an ecologically minimal influence to benthic communities and unlikely to have driven the significant ecological changes observed in benthic communities during the Late Triassic. Although drilling predation occurred during the Late Triassic, we present an updated database of specialized durophagous predators (including fishes, sharks, and reptiles) that are likely to have been more ecologically influential on benthic communities during the Norian Stage, fishes in particular. 
    more » « less
  2. In the South Island of Aotearoa (New Zealand), the preservation of biogenic carbonate in Late Triassic sedimentary rocks is rare to non-existent; however, differential preservation modes between common phyla are commonly observed and serve to elucidate the stratigraphic and diagenetic history of these often poorly- exposed immature sandstone units. The Taringatura Group sandstones from Southland and Otago range from sandy siltstones to silty arkosic sandstones that commonly host molluscan and brachiopod macrofossils as well as rare echinoderms, bryozoans, and foraminifera. Additionally, there is a hypothesized unconformity between the lower Oretian and Otamitan age (227.7–217.0 Ma) and the overlying Warepan age (217–208.5 Ma) deposits indicated by an abrupt change in composition, grain size, and fossil assemblage. Molluscs from the Oretian and Otamitan deposits exhibit fine-detail preservation on external and internal molds. Thin-shelled taxa, such as Halobia, exhibit some shell replacement by clay minerals, likely from the dissolution of feldspars in the surrounding rock. Conversely, larger and thicker-shelled brachiopods and bivalves such as Manticula and Hokonuia do not present as casts. When preserved, foraminifera and rare bryozoans are typically silicified. The overlying Warepan sandstone beds frequently contain fossils of the bivalve Monotis which exhibit a similar preservation style to older molluscs, though lacking clay minerals. Presently, the fossiliferous Taringatura sandstones exhibit low porosity and low permeability, as is expected from the subsequent compaction of sandstones after burial. However, the dissolution of biogenic carbonate implies a past permeability. The presence of clay minerals in Oretian and Otamitan fossils may indicate a period of subaerial exposure and infiltration of meteoric water prior to the deposition of Warepan units. Notably, clay replacement occurs more frequently in the thinnest fossils. Original carbonate material may have persisted for longer in the more robust taxa, allowing them to resist most deformation from compaction prior to the final loss of carbonate. Differential diagenesis of biogenic carbonates supports the existence of a significant unconformity between Otamitan and Warepan units in the Taringatura sandstones. 
    more » « less
  3. Abstract Silesaurids (Archosauria: Dinosauriformes) are found in Middle to Upper Triassic deposits across Pangea, but few stratigraphic sections record the evolution of the group in one geographic area over millions of years. Here, we describe silesaurid remains from the oldest of the Upper Triassic stratigraphic sequence from the base of the Dockum Group, from the type locality of the Otischalkian faunachronozone. Isolated limb bones diagnostic of silesaurids include humeri, femora, and tibiae of a seemingly uniqueSilesaurus‐like taxon from the same locality (Otis Chalk Quarry 3). The femora consist of four specimens of different lengths that sample the variation of character states associated with ontogeny, also sampled previously in both silesaurids (e.g.,Asilisaurus kongweandSilesaurus opolensis) and within neotheropods within Dinosauria (e.g.,Coelophysis bauri). Our observations of the variation in the silesaurid sample further reinforce the interpretation of high variation of morphological features common in dinosauriforms. Furthermore, we show that overpreparation of bone surfaces has hidden some of this variation in previous interpretations. The tibia growth series shows that the fibular crest of the tibia develops during ontogeny, yet another phylogenetically informative character for dinosaurs and their kin that is at least ontogenetically variable in silesaurids. The presence of silesaurids at the base of the Dockum Group (late Carnian or early Norian) conclusively shows that the group was present near the onset of deposition of Upper Triassic rocks and survived for millions of years in the same geographic area at low latitudes throughout the Late Triassic. 
    more » « less
  4. The Norian–Rhaetian boundary (Late Triassic) represents an important precursor extinction event to the end- Triassic mass extinction, but the biotic and geochemical shifts are not well-understood due to poor stratigraphic constraints. Here we examine the microfossil record for metazoans and protists on a Panthalassan carbonate ramp (Gabbs Formation, Nevada, U.S.A.) during the late Norian to mid-Rhaetian, and correlate changes in these assemblages with macrofossil shifts and geochemical data (strontium and carbon isotopes). In the latest Norian, demosponge spicules represent a small proportion of shallow marine biosediments. Demosponges are joined in the earliest Rhaetian by increasingly abundant hypersilicified sponge spicules and silica-limited hexactinellid sponge spicules synchronous with a negative strontium isotope excursion indicating increased hydrothermal or volcanic activity. Common carbonate microfossils such as echinoderm ossicles and ostracods are typically silicified in these deposits as well, suggesting increased silicic porewater. The source for increased dissolved silica in shallow marine systems is suggested to be hydrothermal vent degassing, likely associated with increased tectonic rifting activity. Mid-Rhaetian microfossil assemblages exhibit evidence for intermitted anoxia in reducing conditions, supporting a scenario in which environmental stress was a prolonged feature of much of the Rhaetian Stage, rather than a short-term event in the terminal Rhaetian. While there is no marine sedimentary record of volcanism recognized for this interval, biosedimentary assemblages may serve as proxies for geochemical conditions associated with rifting. 
    more » « less
  5. The geology of the Schroeder Hill region near the head of the Shackleton Glacier, central Transantarctic Mountains, consists of Triassic Fremouw Formation and overlying Falla Formation strata intruded by Jurassic Ferrar Dolerite sills. At ‘Alfie’s Elbow', south-east of Schroeder Hill, upper Fremouw strata are overlain by Upper Cenozoic Sirius Group deposits. These upper Fremouw beds differ from all other examined upper Fremouw strata in the Shackleton Glacier region in being carbonaceous. Quartz-pebble conglomerate characterizes the basal Falla beds, emphasizing a change in provenance. Sirius Group beds occur as a stratigraphic succession draped on modern topography and as structureless sand wedged in modern microtopography. Fremouw beds locally are arched with the fold axis approximately parallel to regional normal faulting related to the uplift and formation of the Transantarctic Mountains. 
    more » « less