This paper documents a year-long experiment to “profile” the process of learning a programming language: gathering data to understand what makes a language hard to learn, and using that data to improve the learning process. We added interactive quizzes to The Rust Programming Language, the official textbook for learning Rust. Over 13 months, 62,526 readers answered questions 1,140,202 times. First, we analyze the trajectories of readers. We find that many readers drop-out of the book early when faced with difficult language concepts like Rust’s ownership types. Second, we use classical test theory and item response theory to analyze the characteristics of quiz questions. We find that better questions are more conceptual in nature, such as asking why a program does not compile vs. whether a program compiles. Third, we performed 12 interventions into the book to help readers with difficult questions. We find that on average, interventions improved quiz scores on the targeted questions by +20
more »
« less
A Grounded Conceptual Model for Ownership Types in Rust
Programmers learning Rust struggle to understand ownership types, Rust’s core mechanism for ensuring memory safety without garbage collection. This paper describes our attempt to systematically design a pedagogy for ownership types. First, we studied Rust developers’ misconceptions of ownership to create the Ownership Inventory, a new instrument for measuring a person’s knowledge of ownership. We found that Rust learners could not connect Rust’s static and dynamic semantics, such as determining why an ill-typed program would (or would not) exhibit undefined behavior. Second, we created a conceptual model of Rust’s semantics that explains borrow checking in terms of flow-sensitive permissions on paths into memory. Third, we implemented a Rust compiler plugin that visualizes programs under the model. Fourth, we integrated the permissions model and visualizations into a broader pedagogy of ownership by writing a new ownership chapter forThe Rust Programming Language, a popular Rust textbook. Fifth, we evaluated an initial deployment of our pedagogy against the original version, using reader responses to the Ownership Inventory as a point of comparison. Thus far, the new pedagogy has improved learner scores on the Ownership Inventory by an average of 9
more »
« less
- Award ID(s):
- 2319014
- PAR ID:
- 10539095
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 7
- Issue:
- OOPSLA2
- ISSN:
- 2475-1421
- Page Range / eLocation ID:
- 1224 to 1252
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rust is a young systems programming language designed to provide both the safety guarantees of high-level languages and the execution performance of low-level languages. To achieve this design goal, Rust provides a suite of safety rules and checks against those rules at the compile time to eliminate many memory-safety and thread-safety issues. Due to its safety and performance, Rust’s popularity has increased significantly in recent years, and it has already been adopted to build many safety-critical software systems. It is critical to understand the learning and programming challenges imposed by Rust’s safety rules. For this purpose, we first conducted an empirical study through close, manual inspection of 100 Rust-related Stack Overflow questions. We sought to understand (1) what safety rules are challenging to learn and program with, (2) under which contexts a safety rule becomes more difficult to apply, and (3) whether the Rust compiler is sufficiently helpful in debugging safety-rule violations. We then performed an online survey with 101 Rust programmers to validate the findings of the empirical study. We invited participants to evaluate program variants that differ from each other, either in terms of violated safety rules or the code constructs involved in the violation, and compared the participants’ performance on the variants. Our mixed-methods investigation revealed a range of consistent findings that can benefit Rust learners, practitioners, and language designers.more » « less
-
The Rust type system guarantees memory safety and data-race freedom. However, to satisfy Rust's type rules, many familiar implementation patterns must be adapted substantially. These necessary adaptations complicate programming and might hinder language adoption. In this paper, we demonstrate that, in contrast to manual programming, automatic synthesis is not complicated by Rust's type system, but rather benefits in two major ways. First, a Rust synthesizer can get away with significantly simpler specifications. While in more traditional imperative languages, synthesizers often require lengthy annotations in a complex logic to describe the shape of data structures, aliasing, and potential side effects, in Rust, all this information can be inferred from the types, letting the user focus on specifying functional properties using a slight extension of Rust expressions. Second, the Rust type system reduces the search space for synthesis, which improves performance. In this work, we present the first approach to automatically synthesizing correct-by-construction programs in safe Rust. The key ingredient of our synthesis procedure is Synthetic Ownership Logic, a new program logic for deriving programs that are guaranteed to satisfy both a user-provided functional specification and, importantly, Rust's intricate type system. We implement this logic in a new tool called RusSOL. Our evaluation shows the effectiveness of RusSOL, both in terms of annotation burden and performance, in synthesizing provably correct solutions to common problems faced by new Rust developers.more » « less
-
We introduce Flux, which shows how logical refinements can work hand in glove with Rust's ownership mechanisms to yield ergonomic type-based verification of low-level pointer manipulating programs. First, we design a novel refined type system for Rust that indexes mutable locations, with pure (immutable) values that can appear in refinements, and then exploits Rust's ownership mechanisms to abstract sub-structural reasoning about locations within Rust's polymorphic type constructors, while supporting strong updates. We formalize the crucial dependency upon Rust's strong aliasing guarantees by exploiting the Stacked Borrows aliasing model to prove that "well-borrowed evaluations of well-typed programs do not get stuck". Second, we implement our type system in Flux, a plug-in to the Rust compiler that exploits the factoring of complex invariants into types and refinements to efficiently synthesize loop annotations-including complex quantified invariants describing the contents of containers-via liquid inference. Third, we evaluate Flux with a benchmark suite of vector manipulating programs and parts of a previously verified secure sandboxing library to demonstrate the advantages of refinement types over program logics as implemented in the state-of-the-art Prusti verifier. While Prusti's more expressive program logic can, in general, verify deep functional correctness specifications, for the lightweight but ubiquitous and important verification use-cases covered by our benchmarks, liquid typing makes verification ergonomic by slashing specification lines by a factor of two, verification time by an order of magnitude, and annotation overhead from up to 24% of code size (average 14%), to nothing at all.more » « less
-
Rust is a general-purpose programming language that is both type-and memory-safe. Rust does not use a garbage collector, but rather achieves these properties through a sophisticated, but complex, type system. Doing so makes Rust very efficient, but makes Rust relatively hard to learn and use. We designed Bronze, an optional, library-based garbage collector for Rust. To see whether Bronze could make Rust more usable, we conducted a randomized controlled trial with volunteers from a 633--person class, collecting data from 428 students in total. We found that for a task that required managing complex aliasing, Bronze users were more likely to complete the task in the time available, and those who did so required only about a third as much time (4 hours vs. 12 hours). We found no significant difference in total time, even though Bronze users re-did the task without Bronze afterward. Surveys indicated that ownership, borrowing, and lifetimes were primary causes of the challenges that users faced when using Rust.more » « less