skip to main content


This content will become publicly available on September 2, 2025

Title: Can internal range structure predict range shifts?
Abstract

Poleward and uphill range shifts are a common—but variable—response to climate change. We lack understanding regarding this interspecific variation; for example, functional traits show weak or mixed ability to predict range shifts.

Characteristics of species' ranges may enhance prediction of range shifts. However, the explanatory power of many range characteristics—especially within‐range abundance patterns—remains untested.

Here, we introduce a hypothesis framework for predicting range‐limit population trends and range shifts from the internal structure of the geographic range, specifically range edge hardness, defined as abundance within range edges relative to the whole range. The inertia hypothesis predicts that high edge abundance facilitates expansions along the leading range edge but creates inertia (either more individuals must disperse or perish) at the trailing range edge such that the trailing edge recedes slowly. In contrast, the limitation hypothesis suggests that hard range edges are the signature of strong limits (e.g. biotic interactions) that force faster contraction of the trailing edge but block expansions at the leading edge of the range.

Using a long‐term avian monitoring dataset from northern Minnesota, USA, we estimated population trends for 35 trailing‐edge species and 18 leading‐edge species and modelled their population trends as a function of range edge hardness derived from eBird data. We found limited evidence of associations between range edge hardness and range‐limit population trends. Trailing‐edge species with harder range edges were slightly more likely to be declining, demonstrating weak support for the limitation hypothesis. In contrast, leading‐edge species with harder range edges were slightly more likely to be increasing, demonstrating weak support for the inertia hypothesis.

These opposing results for the leading and trailing range edges might suggest that different mechanisms underpin range expansions and contractions, respectively. As data and state‐of‐the‐art modelling efforts continue to proliferate, we will be ever better equipped to map abundance patterns within species' ranges, offering opportunities to anticipate range shifts through the lens of the geographic range.

 
more » « less
NSF-PAR ID:
10539130
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
93
Issue:
10
ISSN:
0021-8790
Format(s):
Medium: X Size: p. 1556-1566
Size(s):
p. 1556-1566
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding how climate change impacts trailing‐edge populations requires information about how abiotic and biotic factors limit their distributions. Theory indicates that socially mediated Allee effects can limit species distributions by suppressing growth rates of peripheral populations when social information is scarce.

    The goal of our research was to determine if socially mediated Allee effects limit the distribution of Canada warblerCardellina canadensisat the trailing‐edge of the geographic range.

    Using 4 years of observational data from 71 sites and experimental data at 10 sites, we tested two predictions of the socially mediated range limitation hypothesis: (a) local growth rates should be positively correlated with local density and (b) the addition of social cues immediately outside the trailing‐edge range boundary would result in colonization of formerly unoccupied habitat and increased growth rates. During the third breeding season, social cues were experimentally added at 10 formerly unoccupied sites within and beyond the species’ local range margin to determine if the addition of social information could increase density and effectively expand the species’ range.

    No experimental sites were colonized after adding social cues and no evidence of Allee effects was found. Rather, temperature, precipitation and negative density dependence strongly influenced population growth rates.

    Although theoretical models indicate that the presence of socially mediated Allee effects at species range boundaries could increase the rate of climate‐induced range shifts and local extinctions, empirical results from the first test of this hypothesis suggest that Allee effects play a minimal role in limiting species’ distributions.

     
    more » « less
  2. Abstract

    As climatic variation re‐shapes global biodiversity, understanding eco‐evolutionary feedbacks during species range shifts is of increasing importance. Theory on range expansions distinguishes between two different forms: “pulled” and “pushed” waves. Pulled waves occur when the source of the expansion comes from low‐density peripheral populations, while pushed waves occur when recruitment to the expanding edge is supplied by high‐density populations closer to the species' core. How extreme events shape pushed/pulled wave expansion events, as well as trailing‐edge declines/contractions, remains largely unexplored. We examined eco‐evolutionary responses of a marine invertebrate (the owl limpet,Lottia gigantea) that increased in abundance during the 2014–2016 marine heatwaves near the poleward edge of its geographic range in the northeastern Pacific. We used whole‐genome sequencing from 19 populations across >11 degrees of latitude to characterize genomic variation, gene flow, and demographic histories across the species' range. We estimated present‐day dispersal potential and past climatic stability to identify how contemporary and historical seascape features shape genomic characteristics. Consistent with expectations of a pushed wave, we found little genomic differentiation between core and leading‐edge populations, and higher genomic diversity at range edges. A large and well‐mixed population in the northern edge of the species' range is likely a result of ocean current anomalies increasing larval settlement and high‐dispersal potential across biogeographic boundaries. Trailing‐edge populations have higher differentiation from core populations, possibly driven by local selection and limited gene flow, as well as high genomic diversity likely as a result of climatic stability during the Last Glacial Maximum. Our findings suggest that extreme events can drive poleward range expansions that carry the adaptive potential of core populations, while also cautioning that trailing‐edge extirpations may threaten unique evolutionary variation. This work highlights the importance of understanding how both trailing and leading edges respond to global change and extreme events.

     
    more » « less
  3. Abstract

    Predicting species' range shifts under future climate is a central goal of conservation ecology. Studying populations within and beyond multiple species' current ranges can help identify whether demographic responses to climate change exhibit directionality, indicative of range shifts, and whether responses are uniform across a suite of species.

    We quantified the demographic responses of six native perennial prairie species planted within and, for two species, beyond their northern range limits to a 3‐year experimental manipulation of temperature and precipitation at three sites spanning a latitudinal climate gradient in the Pacific Northwest, USA. We estimated population growth rates (λ) using integral projection models and tested for opposing responses to climate in different demographic vital rates (demographic compensation).

    Where species successfully established reproductive populations, warming negatively affectedλat sites within species' current ranges. Contrarily, warming and drought positively affectedλfor the two species planted beyond their northern range limits. Most species failed to establish a reproductive population at one or more sites within their current ranges, due to extremely low germination and seedling survival. We found little evidence of demographic compensation buffering populations to the climate treatments.

    Synthesis. These results support predictions across a suite of species that ranges will need to shift with climate change as populations within current ranges become increasingly vulnerable to decline. Species capable of dispersing beyond their leading edges may be more likely to persist, as our evidence suggests that projected changes in climate may benefit such populations. If species are unable to disperse to new habitat on their own, assisted migration may need to be considered to prevent the widespread loss of vulnerable species.

     
    more » « less
  4. Marine species worldwide are responding to ocean warming by shifting their ranges to new latitudes and, for intertidal species, elevations. Demographic traits can vary across populations spanning latitudinal and elevational ranges, with impacts on population growth. Understanding how demography varies across gradients from range center to edge could help us predict future shifts, species assemblages, and extinction risks. We investigated demographic traits for 2 range-expanding whelk species:Acanthinucella spirataandMexacanthina lugubris.We measured reproductive output across environmental (latitudinal and shore elevation) gradients along the coast of California, USA. We also conducted intensive measurements of offspring condition (survival and thermal tolerance) across shore elevation forM. lugubrisat one site. We found no difference in reproductive output, body size, or larval survival across shore heights forM. lugubris,suggesting that egg-laying behavior buffers developing stages from the relatively high level of thermal variation experienced due to daily tidal emersion. However, across latitudes, reproductive output increased toward the leading range edge forA. spirata, and body size increased for both species. Increased vital rates at the leading range edge could increase whelk population growth and expansion, allowing species to persist under climate change even if contractions occur at trailing edges.

     
    more » « less
  5. Abstract

    Increased global temperatures caused by climate change are causing species to shift their ranges and colonize new sites, creating novel assemblages that have historically not interacted. Species interactions play a central role in the response of ecosystems to climate change, but the role of trophic interactions in facilitating or preventing range expansions is largely unknown.

    The goal of our study was to understand how predators influence the ability of range‐shifting prey to successfully establish in newly available habitat following climate warming. We hypothesized that fish predation facilitates the establishment of colonizing zooplankton populations, because fish preferentially consume larger species that would otherwise competitively exclude smaller‐bodied colonists.

    We conducted a mesocosm experiment with zooplankton communities and their fish predators from lakes of the Sierra Nevada Mountains in California, USA. We tested the effect of fish predation on the establishment and persistence of a zooplankton community when introduced in the presence of higher‐ and lower‐elevation communities at two experimental temperatures in field mesocosms.

    We found that predators reduce the abundance of larger‐bodied residents from the alpine and facilitate the establishment of new lower‐elevation species. In addition, fish predation and warming independently reduced the average body size of zooplankton by up to 30%. This reduction in body size offset the direct effect of warming‐induced increases in population growth rates, leading to no net change in zooplankton biomass or trophic cascade strength.

    We found support for a shift to smaller species with climate change through two mechanisms: (a) the direct effects of warming on developmental rates and (b) size‐selective predation that altered the identity of species’ that could colonize new higher elevation habitat. Our results suggest that predators can amplify the rate of range shifts by consuming larger‐bodied residents and facilitating the establishment of new species. However, the effects of climate warming were dampened by reducing the average body size of community members, leading to no net change in ecosystem function, despite higher growth rates. This work suggests that trophic interactions play a role in the reorganization of regional communities under climate warming.

     
    more » « less