Abstract The cell type-specific expression of key transcription factors is central to development and disease.Brachyury/T/TBXTis a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalianBrachyury/T/TBXTgene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three conservedBrachyury-controlling notochord enhancers,T3,C, andI, in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers,in cisdeletion of all three enhancers in mouse abolishes Brachyury/T/Tbxt expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. The threeBrachyury-driving notochord enhancers are conserved beyond mammals in thebrachyury/tbxtbloci of fishes, dating their origin to the last common ancestor of jawed vertebrates. Our data define the vertebrate enhancers forBrachyury/T/TBXTBnotochord expression through an auto-regulatory mechanism that conveys robustness and adaptability as ancient basis for axis development.
more »
« less
Conserved and novel enhancers in the Aedes aegypti single-minded locus recapitulate embryonic ventral midline gene expression
Transcriptional cis-regulatory modules, e.g., enhancers, control the time and location of metazoan gene expression. While changes in enhancers can provide a powerful force for evolution, there is also significant deep conservation of enhancers for developmentally important genes, with function and sequence characteristics maintained over hundreds of millions of years of divergence. Not well understood, however, is how the overall regulatory composition of a locus evolves, with important outstanding questions such as how many enhancers are conserved vs. novel, and to what extent are the locations of conserved enhancers within a locus maintained? We begin here to address these questions with a comparison of the respective single-minded (sim) loci in the two dipteran species Drosophila melanogaster (fruit fly) and Aedes aegypti (mosquito). sim encodes a highly conserved transcription factor that mediates development of the arthropod embryonic ventral midline. We identify two enhancers in the A. aegypti sim locus and demonstrate that they function equivalently in both transgenic flies and transgenic mosquitoes. One A.aegypti enhancer is highly similar to known Drosophila counterparts in its activity, location, and autoregulatory capability. The other differs from any known Drosophila sim enhancers with a novel location, failure to autoregulate, and regulation of expression in a unique subset of midline cells. Our results suggest that the conserved pattern of sim expression in the two species is the result of both conserved and novel regulatory sequences. Further examination of this locus will help to illuminate how the overall regulatory landscape of a conserved developmental gene evolves.
more »
« less
- Award ID(s):
- 1911723
- PAR ID:
- 10539207
- Editor(s):
- Cadigan, Ken M
- Publisher / Repository:
- PLoS
- Date Published:
- Journal Name:
- PLOS Genetics
- Volume:
- 20
- Issue:
- 4
- ISSN:
- 1553-7404
- Page Range / eLocation ID:
- e1010891
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kopp, Artyom (Ed.)Changes in gene regulation represent an important path to generate developmental differences affecting anatomical traits. Interspecific divergence in gene expression often results from changes in transcription-stimulating enhancer elements. While gene repression is crucial for precise spatiotemporal expression patterns, the relative contribution of repressive transcriptional silencers to regulatory evolution remains to be addressed. Here, we show that the Drosophila pigmentation gene ebony has mainly evolved through changes in the spatial domains of silencers patterning its abdominal expression. By precisely editing the endogenous ebony locus of D. melanogaster , we demonstrate the requirement of two redundant abdominal enhancers and three silencers that repress the redundant enhancers in a patterned manner. We observe a role for changes in these silencers in every case of ebony evolution observed to date. Our findings suggest that negative regulation by silencers likely has an under-appreciated role in gene regulatory evolution.more » « less
-
We used capped analysis of gene expression with sequencing (CAGE-seq) to profile eRNA expression and enhancer activity during embryogenesis of a model echinoderm: the sea urchin, Strongylocentrotus purpuratus . We identified more than 18,000 enhancers that were active in mature oocytes and developing embryos and documented a burst of enhancer activation during cleavage and early blastula stages. We found that a large fraction (73.8%) of all enhancers active during the first 48 h of embryogenesis were hyperaccessible no later than the 128-cell stage and possibly even earlier. Most enhancers were located near gene bodies, and temporal patterns of eRNA expression tended to parallel those of nearby genes. Furthermore, enhancers near lineage-specific genes contained signatures of inputs from developmental gene regulatory networks deployed in those lineages. A large fraction (60%) of sea urchin enhancers previously shown to be active in transgenic reporter assays was associated with eRNA expression. Moreover, a large fraction (50%) of a representative subset of enhancers identified by eRNA profiling drove tissue-specific gene expression in isolation when tested by reporter assays. Our findings provide an atlas of developmental enhancers in a model sea urchin and support the utility of eRNA profiling as a tool for enhancer discovery and regulatory biology. The data generated in this study are available at Echinobase, the public database of information related to echinoderm genomics.more » « less
-
The axon guidance cue netrin-1 signals through its receptor DCC (deleted in colorectal cancer) to attract commissural axons to the midline. Variants in DCC are frequently associated with congenital mirror movements (CMMs). A CMM-associated variant in the cytoplasmic tail of DCC is located in a conserved motif predicted to bind to a regulator of actin dynamics called the WAVE (Wiskott-Aldrich syndrome protein–family verprolin homologous protein) regulatory complex (WRC). Here, we explored how this variant affects DCC function and may contribute to CMM. We found that a conserved WRC-interacting receptor sequence (WIRS) motif in the cytoplasmic tail of DCC mediated the interaction between DCC and the WRC. This interaction was required for netrin-1–mediated axon guidance in cultured rodent commissural neurons. Furthermore, the WIRS motif of Fra, theDrosophilaDCC ortholog, was required for attractive signaling in vivo at theDrosophilamidline. The CMM-associated R1343H variant of DCC, which altered the WIRS motif, prevented the DCC-WRC interaction and impaired axon guidance in cultured commissural neurons and inDrosophila. The findings reveal the WRC as a pivotal component of netrin-1–DCC signaling and uncover a molecular mechanism explaining how a human genetic variant in the cytoplasmic tail of DCC may lead to CMM.more » « less
-
Saitou, Naruya (Ed.)Abstract Enhancers are often studied as noncoding regulatory elements that modulate the precise spatiotemporal expression of genes in a highly tissue-specific manner. This paradigm has been challenged by recent evidence of individual enhancers acting in multiple tissues or developmental contexts. However, the frequency of these enhancers with high degrees of “pleiotropy” out of all putative enhancers is not well understood. Consequently, it is unclear how the variation of enhancer pleiotropy corresponds to the variation in expression breadth of target genes. Here, we use multi-tissue chromatin maps from diverse human tissues to investigate the enhancer–gene interaction architecture while accounting for 1) the distribution of enhancer pleiotropy, 2) the variations of regulatory links from enhancers to target genes, and 3) the expression breadth of target genes. We show that most enhancers are tissue-specific and that highly pleiotropy enhancers account for <1% of all putative regulatory sequences in the human genome. Notably, several genomic features are indicative of increasing enhancer pleiotropy, including longer sequence length, greater number of links to genes, increasing abundance and diversity of encoded transcription factor motifs, and stronger evolutionary conservation. Intriguingly, the number of enhancers per gene remains remarkably consistent for all genes (∼14). However, enhancer pleiotropy does not directly translate to the expression breadth of target genes. We further present a series of Gaussian Mixture Models to represent this organization architecture. Consequently, we demonstrate that a modest trend of more pleiotropic enhancers targeting more broadly expressed genes can generate the observed diversity of expression breadths in the human genome.more » « less
An official website of the United States government

